留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光学玻璃磨削亚表面损伤预测模型及DOE实验设计

杨晓辉 周凌宇 刘宁 孟宪宇

杨晓辉,周凌宇,刘宁, 等. 光学玻璃磨削亚表面损伤预测模型及DOE实验设计[J]. 机械科学与技术,2024,43(3):520-525 doi: 10.13433/j.cnki.1003-8728.20220242
引用本文: 杨晓辉,周凌宇,刘宁, 等. 光学玻璃磨削亚表面损伤预测模型及DOE实验设计[J]. 机械科学与技术,2024,43(3):520-525 doi: 10.13433/j.cnki.1003-8728.20220242
YANG Xiaohui, ZHOU Lingyu, LIU Ning, MENG Xianyu. Prediction Model for Subsurface Damage in Grinding of Optical Glass and Doe Experiment Design[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(3): 520-525. doi: 10.13433/j.cnki.1003-8728.20220242
Citation: YANG Xiaohui, ZHOU Lingyu, LIU Ning, MENG Xianyu. Prediction Model for Subsurface Damage in Grinding of Optical Glass and Doe Experiment Design[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(3): 520-525. doi: 10.13433/j.cnki.1003-8728.20220242

光学玻璃磨削亚表面损伤预测模型及DOE实验设计

doi: 10.13433/j.cnki.1003-8728.20220242
基金项目: 国家973重点基础研究发展计划(2017YFD0701103)、国家自然科学基金项目(51705189)、吉林省教育厅科学研究项目(JJKH20241782KJ)、吉林省职业教育与成人教育教学改革项目(2023ZCY294)及吉林省高教科研一般课题(JGJX2022D714)
详细信息
    作者简介:

    杨晓辉,副教授,451842973@qq.com

    通讯作者:

    孟宪宇,副教授,博士,54262932@qq.com

  • 中图分类号: TG58; TQ164

Prediction Model for Subsurface Damage in Grinding of Optical Glass and Doe Experiment Design

  • 摘要: 为了掌握光学玻璃材料杯型砂轮研磨与表面粗糙度(SR)和亚表面损伤(SSD)机理,本文建立BK7光学玻璃杯型砂轮研磨表面粗糙度的预测模型,通过改变磨削参数来研究对表面粗糙度的影响。设计DOE试验,研究影响SR与SSD的显著性特征因子,并分析了各因子的交互作用。实验结果表明预测模型的可靠性,得到表面粗糙度的预测模型数据与实验数据的平均误差为5.47%。采用角抛光法,通过电子显微镜观测表面裂纹,并测量裂纹的深度。 最后,基于Li的模型,建立基于磨削工艺参数的亚表面损伤的新预测模型。实验结果表明:实验和预测模型结果具有很好的一致性,模型数据与实验数据的平均误差为6.19%,并且新预测模型结果要优于Li的模型。
  • 图  1  亚表面损伤模型

    Figure  1.  Subsurface damage model

    图  2  样品及实验设备准备

    Figure  2.  Preparation of samples and experimental equipment

    图  3  实验流程图

    Figure  3.  Experimental flow chart

    图  4  角抛光法测量SSD

    Figure  4.  Angle polishing method to measure SSD

    图  5  不同抛光深度的BK7表面形貌

    Figure  5.  BK7 surface topography with different polishing depths

    图  6  SR和SSD与切削工艺参数的Pareto图

    Figure  6.  Pareto plot of SR and SSD versus cutting process parameters

    图  7  SR和SSD DOE实验分析结果

    Figure  7.  Experimental analysis results of SRSSD DOE

    图  8  SSD的测量值与预测值的对比

    Figure  8.  Comparison of measured and predicted SSD

    表  1  BK7玻璃的性能参数表

    Table  1.   Performance parameters of BK7 glass

    α/(°) E/GPa H/GPa Kc/(${\mathrm{MPa}} \cdot {\mathrm{m}}^{\tfrac 1 2} $) M βk
    46 ~ 62 85 7.7 0.82 0.33 0.027
    下载: 导出CSV

    表  2  磨削的工艺参数及等级

    Table  2.   Process parameters and grades of grinding

    参数 1级 2级 3级 4级
    切削速度/(m·s−1 15 20 25 30
    进给速度/(mm·r−1 0.005 0.01 0.015 0.02
    切削深度/μm 20 40 80 100
    转盘速度/(r·min−1 100 200 300 500
    下载: 导出CSV

    表  3  正交试验表

    Table  3.   Orthogonal tests

    编号 v/ (m·s−1 f /(mm·r−1 ae/μm n/(r·min−1 SR/μm
    1 15 0.005 100 500 14.36
    2 15 0.005 100 100 19.23
    3 30 0.005 100 100 21.73
    4 15 0.02 100 500 15.71
    5 30 0.005 20 100 21.44
    6 30 0.005 20 500 35.49
    7 30 0.02 20 100 32.58
    8 15 0.005 20 500 21.37
    9 30 0.02 20 500 41.22
    10 30 0.02 100 100 42.67
    11 15 0.02 20 500 26.11
    12 15 0.005 20 100 12.15
    13 15 0.02 100 100 22.14
    14 30 0.02 100 500 34.18
    15 30 0.005 100 500 72.35
    16 15 0.02 20 100 45.56
    下载: 导出CSV

    表  4  SR预测模型验证实验参数及结果

    Table  4.   Experimental parameters and results of SR prediction model validation

    编号 切削速度/
    (m·s−1
    进给速度/
    (mm·r−1
    切削深度/
    μm
    转盘转速/
    (r·min−1
    SR/μm SR预测模型/μm SR误差/% SSD/μm
    1 35 0.010 40 200 6.33 6.93 8.66 50.45
    2 5 0.010 40 100 10.23 11.47 10.81 70.68
    3 5 0.010 20 200 9.86 10.48 5.91 57.38
    4 35 0.010 20 100 5.98 6.34 5.67 36.71
    5 35 0.005 20 200 5.87 6.21 5.47 37.15
    6 5 0.005 20 100 11.34 11.08 2.35 92.87
    7 35 0.005 40 100 8.91 9.63 7.48 65.31
    8 5 0.005 40 200 13.53 13.82 2.1 108.91
    下载: 导出CSV
  • [1] 刘硕. BK7光学玻璃超声振动磨削力建模及工艺实验的研究[D]. 哈尔滨: 哈尔滨工业大学, 2019: 60-64.

    LIU S. Grinding force modeling and experiment research in ultrasonic vibration grinding of optical glass BK7[D]. Harbin: Harbin Institute of Technology, 2019: 60-64. (in Chinese)
    [2] 王洋. 金刚石磨粒超声振动刻划BK7玻璃的亚表面损伤研究[J]. 金刚石与磨料磨具工程, 2020, 40(1): 29-33. doi: 10.13394/j.cnki.jgszz.2020.1.0004

    WANG Y. Study on sub surface damage of BK7 glass by ultrasonic vibration of diamond abrasive[J]. Diamond & Abrasives Engineering, 2020, 40(1): 29-33. (in Chinese) doi: 10.13394/j.cnki.jgszz.2020.1.0004
    [3] 黄铖. BK7光学玻璃超声振动磨削亚表面损伤的研究[D]. 哈尔滨: 哈尔滨工业大学, 2017: 45-47.

    HUANG C. Research on subsurface damages in ultrasonic assisted grinding of BK7 optical glass[D]. Harbin: Harbin Institute of Technology, 2017: 45-47. (in Chinese)
    [4] HE J H, BARAHIMI V, FARAHNAKIAN M, et al. A new monitor model to detect damages in surface and subsurface during cup grinding process of BK7 optical glass: a new optimization model for energy damage[J]. Journal of Thermal Analysis and Calorimetry, 2021, 144(5): 1949-1957. doi: 10.1007/s10973-020-09660-5
    [5] SOLHTALAB A, ADIBI H, ESMAEILZARE A, et al. Cup wheel grinding-induced subsurface damage in optical glass BK7: An experimental, theoretical and numerical investigation[J]. Precision Engineering, 2019, 57: 162-175. doi: 10.1016/j.precisioneng.2019.04.003
    [6] ZHAO P Y, ZHOU M, ZHANG Y J, et al. Surface roughness prediction model in ultrasonic vibration assisted grinding of BK7 optical glass (English)[J]. Journal of Central South University, 2018, 25(2): 277-286.
    [7] 周明, 黄铖, 赵培轶, 等. 光学玻璃超声振动磨削亚表面损伤的试验研究[J]. 工具技术, 2017, 51(7): 15-19. doi: 10.16567/j.cnki.1000-7008.2017.07.004

    ZHOU M, HUANG C, ZHAO P Y, et al. Experimental research on optical glass ultrasonic vibration grinding subsurface damage[J]. Tool Engineering, 2017, 51(7): 15-19. (in Chinese) doi: 10.16567/j.cnki.1000-7008.2017.07.004
    [8] LI S Y, WANG Z, WU Y L. Relationship between subsurface damage and surface roughness of optical materials in grinding and lapping processes[J]. Journal of Materials Processing Technology, 2008, 205(1-3): 34-41. doi: 10.1016/j.jmatprotec.2007.11.118
    [9] YAO Z Q, GU W B, LI K M. Relationship between surface roughness and subsurface crack depth during grinding of optical glass BK7[J]. Journal of Materials Processing Technology, 2012, 212(4): 969-976. doi: 10.1016/j.jmatprotec.2011.12.007
    [10] LAWN B R, EVANS A G, MARSHALL D B. Elastic/plastic indentation damage in ceramics: the median/radial crack system[J]. Journal of the American Ceramic Society, 1980, 63(9-10): 574-581. doi: 10.1111/j.1151-2916.1980.tb10768.x
    [11] LYU D X, YAN C, CHEN G, et al. Mechanistic prediction for cutting force in rotary ultrasonic machining of BK7 glass based on probability statistics[J]. Ultrasonics, 2020, 101: 106006. doi: 10.1016/j.ultras.2019.106006
    [12] CHEN J B, FANG Q H, LI P. Effect of grinding wheel spindle vibration on surface roughness and subsurface damage in brittle material grinding[J]. International Journal of Machine Tools and Manufacture, 2015, 91: 12-23. doi: 10.1016/j.ijmachtools.2015.01.003
    [13] LYU D X. Influences of high-frequency vibration on tool wear in rotary ultrasonic machining of glass BK7[J]. The International Journal of Advanced Manufacturing Technology, 2016, 84(5-8): 1443-1455.
    [14] LAMBROPOULOS J C, FANG T, FUNKENBUSCH P D, et al. Surface microroughness of optical glasses under deterministic microgrinding[J]. Applied Optics, 1996, 35(22): 4448-4462. doi: 10.1364/AO.35.004448
    [15] 吕东喜, 王洪祥, 黄燕华. 光学材料磨削的亚表面损伤预测[J]. 光学精密工程, 2013, 21(3): 680-686. doi: 10.3788/OPE.20132103.0680

    LYU D X, WANG H X, HUANG Y H. Prediction of grinding induced subsurface damage of optical materials[J]. Optics and Precision Engineering, 2013, 21(3): 680-686. (in Chinese) doi: 10.3788/OPE.20132103.0680
    [16] 李平. 脆性光学材料高效精密低损伤磨削加工机理、工艺及工程应用研究[D]. 长沙: 湖南大学, 2017: 166-170.

    LI P. Research on grinding mechanism, processing and engineering application of the precision and low damage grinding technology oriented to achieve high process efficiency for brittle optical materials[D]. Changsha: Hunan University, 2017: 166-170. (in Chinese)
    [17] 朱家豪. 弧形金刚石砂轮精密修整与非球面磨削技术研究[D]. 济南: 山东大学, 2019: 33-39.

    ZHU J H. Precision truing of arc-shaped diamond grinding wheel and grinding of aspheric optics[D]. Ji'nan: Shandong University, 2019: 33-39. (in Chinese)
    [18] 吕东喜, 陈明达, 姚友强, 等. 基于概率统计的BK7玻璃磨削亚表层损伤深度在线预测技术[J]. 光学精密工程, 2020, 28(1): 102-109. doi: 10.3788/OPE.20202801.0102

    LYU D X, CHEN M D, YAO Y Q, et al. Prediction of subsurface damage depth in grinding of BK7 glass based on probability statistics[J]. Optics and Precision Engineering, 2020, 28(1): 102-109. (in Chinese) doi: 10.3788/OPE.20202801.0102
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  26
  • HTML全文浏览量:  9
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-27
  • 刊出日期:  2024-03-25

目录

    /

    返回文章
    返回