留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合电源电动汽车双模糊控制能量管理策略设计

杨磊 白志峰 王娟 黄琳

杨磊,白志峰,王娟, 等. 复合电源电动汽车双模糊控制能量管理策略设计[J]. 机械科学与技术,2024,43(2):336-343 doi: 10.13433/j.cnki.1003-8728.20220238
引用本文: 杨磊,白志峰,王娟, 等. 复合电源电动汽车双模糊控制能量管理策略设计[J]. 机械科学与技术,2024,43(2):336-343 doi: 10.13433/j.cnki.1003-8728.20220238
YANG Lei, BAI Zhifeng, WANG Juan, HUANG Lin. Energy Management Strategy Design for Double Fuzzy Control of Hybrid Storage Electric Vehicle[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(2): 336-343. doi: 10.13433/j.cnki.1003-8728.20220238
Citation: YANG Lei, BAI Zhifeng, WANG Juan, HUANG Lin. Energy Management Strategy Design for Double Fuzzy Control of Hybrid Storage Electric Vehicle[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(2): 336-343. doi: 10.13433/j.cnki.1003-8728.20220238

复合电源电动汽车双模糊控制能量管理策略设计

doi: 10.13433/j.cnki.1003-8728.20220238
基金项目: 西安市自然科学基金项目(XA2020-CXRCFW-0247)与西安市清洁能源重点实验室项目(2019219914SYS014CG036)
详细信息
    作者简介:

    杨磊,硕士研究生,yang30yl@163.com

    通讯作者:

    王娟,教授,博士生导师,juanwang@xauat.edu.cn

  • 中图分类号: U469.72

Energy Management Strategy Design for Double Fuzzy Control of Hybrid Storage Electric Vehicle

  • 摘要: 为增强对复合电源电动汽车锂电池峰值电流抑制作用,加强对锂电池的保护,提出双模糊控制能量管理策略。基于AVL CRUISE软件平台搭建了整车模型,在MATLAB/Simulink中建立了能量管理控制策略模型,通过联合仿真验证控制策略的有效性。与基于规则和基于单一模糊控制能量管理策略对比,本文所提出控制策略有效降低了锂电池峰值电流,同时兼顾了高低功率区间的锂电池电流波动抑制目标,使得超级电容在汽车各需求功率区间内放电功率更加合理,更好地保护了锂电池。
  • 图  1  电容半主动式结构

    Figure  1.  Capacitor semi-active structure

    图  2  复合电源电动汽车模型

    Figure  2.  The model of Hybrid Storage Electric Vehicle

    图  3  能量管理策略结构图

    Figure  3.  The structure of energy management strategy

    图  4  加速意图识别输入输出隶属度函数

    Figure  4.  The input-output membership function of acceleration intention recognition

    图  5  能量管理策略逻辑框图

    Figure  5.  The logical block diagram of energy management strategy

    图  6  循环工况

    Figure  6.  Cycle conditions

    图  7  复合电源系统能量管理控制策略 Simulink 模型

    Figure  7.  The Simulink model of energy management strategy for hybrid storage electric system

    图  8  锂电池与超级电容电流变化图

    Figure  8.  The current changes of lithium battery and supercapacitor

    表  1  整车基本参数

    Table  1.   Entire vehicle's basic parameters

    参数 数值
    整备质量/kg 1650
    满载质量/kg 2020
    质心到前轴距离/mm 1330
    质心到后轴距离/mm 1310
    迎风面积$A$/m2 2.12
    空气阻力系数${C_{\rm{D}}}$ 0.35
    轮胎滚动半径$r$/mm 301
    滚动阻力系数$f$ 0.019
    旋转质量换算系数$\delta $ 1.1
    传动效率$\eta $ 0.9
    下载: 导出CSV

    表  2  整车性能指标参数

    Table  2.   Vehicle performance index parameters

    性能指标 基本参数要求
    最高车速$ {{u}}_{\mathrm{m}\mathrm{a}\mathrm{x}} $ ≥160 km/h
    0~50 km/h加速时间 ≤5 s
    0~100 km/h加速时间 ≤12 s
    最大爬坡度${\alpha _{\max }}$ 30%(车速:30 km/h)
    续驶里程 300 km
    下载: 导出CSV

    表  3  电机基本参数

    Table  3.   Basic parameters of the motor

    电机参数 参数值
    额定电压/V 336
    额定功率/kW 50
    峰值功率/kW 110
    额定转速/(r·min−1) 4400
    最高转速/(r·min−1) 10000
    额定转矩/Nm 109
    最大转矩/Nm 239
    下载: 导出CSV

    表  4  锂电池与超级电容参数

    Table  4.   The basic parameters of lithium battery and supercapacitor

    类型 电源参数 数值
    锂电池 单体额定电压/V 3.2
    单体最大电压/V 3.6
    单体容量/Ah 22.5
    串联数 105
    并联数 9
    额定总电压/V 336
    超级
    电容
    单体额定电压/V 2.7
    单体最大电压/V 3.0
    单体容量/F 3000
    放电范围 40%~100%
    串联数 148
    并联数 1
    额定总电压/V 400
    下载: 导出CSV

    表  5  加速意图识别规则表

    Table  5.   Rules table of acceleration intention recognition

    加速意图加速踏板开度
    SSSMBVB
    加速踏板开度变化率SSSSSMBVB
    SSSMBVB
    MSSMBVB
    BMMBVBVB
    VBMBBVBVB
    下载: 导出CSV

    表  6  K1控制规则表

    Table  6.   K1 control rules

    K1P
    SMB
    SOCb( SOCsc=S)SSSM
    MSSS
    BSSS
    SOCb( SOCsc=M)SSMM
    MSSM
    BSSS
    SOCb( SOCsc=B)SMBB
    MSMB
    BSSM
    下载: 导出CSV

    表  7  K2输出规则表

    Table  7.   K2 control rules

    K2P
    SSSMBVB
    SOCb( SOCsc=S)SSSSSSMM
    MSSSSSSSS
    BSSSSSSSS
    SOCb( SOCsc=M)SSSSMBB
    MSSSSSMB
    BSSSSSMM
    SOCb( SOCsc=B)SSSMBVB
    MSSSSSMB
    BSSSSSMB
    下载: 导出CSV

    表  8  循环工况下最大峰值电流

    Table  8.   Maximum peak current under different cycle conditions A

    控制
    策略
    单电源
    系统
    基于
    规则
    基于单一
    模糊控制
    基于双模糊
    控制
    NEDC 130.452 63.615 96.499 67.809
    FTP75 111.422 63.343 62.586 59.415
    下载: 导出CSV
  • [1] 张雷, 胡晓松, 王震坡. 超级电容管理技术及在电动汽车中的应用综述[J]. 机械工程学报, 2017, 53(16): 32-43. doi: 10.3901/JME.2017.16.032

    ZHANG L, HU X S, WANG Z P. Overview of supercapacitor management techniques in electrified vehicle applications[J]. Journal of Mechanical Engineering, 2017, 53(16): 32-43. (in Chinese) doi: 10.3901/JME.2017.16.032
    [2] 张进, 麻友良. 复合电源电动汽车动力系统优化设计研究[J]. 计算机仿真, 2018, 35(4): 112-117. doi: 10.3969/j.issn.1006-9348.2018.04.023

    ZHANG J, MA Y L. Optimal design of electric vehicle 's power system with composite power supply[J]. Computer Simulation, 2018, 35(4): 112-117. (in Chinese) doi: 10.3969/j.issn.1006-9348.2018.04.023
    [3] RIZOUG N, MESBAHI T, SADOUN R, et al. Development of new improved energy management strategies for electric vehicle battery/supercapacitor hybrid energy storage system[J]. Energy Efficiency, 2018, 11(4): 823-843. doi: 10.1007/s12053-017-9602-8
    [4] WANG B, XU J, CAO B G, et al. A novel multimode hybrid energy storage system and its energy management strategy for electric vehicles[J]. Journal of Power Sources, 2015, 281: 432-443. doi: 10.1016/j.jpowsour.2015.02.012
    [5] YU H L, TARSITANO D, HU X S, et al. Real time energy management strategy for a fast charging electric urban bus powered by hybrid energy storage system[J]. Energy, 2016, 112: 322-331. doi: 10.1016/j.energy.2016.06.084
    [6] ZHANG Q, WANG L J, LI G, et al. A real-time energy management control strategy for battery and supercapacitor hybrid energy storage systems of pure electric vehicles[J]. Journal of Energy Storage, 2020, 31: 101721. doi: 10.1016/j.est.2020.101721
    [7] 赵秀春, 郭戈. 混合动力电动汽车能量管理策略研究综述[J]. 自动化学报, 2016, 42(3): 321-334.

    ZHAO X C, GUO G. Survey on energy management strategies for hybrid electric vehicles[J]. Acta Automatica Sinica, 2016, 42(3): 321-334. (in Chinese)
    [8] 王琪, 孙玉坤. 一种混合动力汽车复合电源能量管理系统控制策略与优化设计方法研究[J]. 中国电机工程学报, 2014, 34(S1): 195-203.

    WANG Q, SUN Y K. Research on the control strategy and optimization of energy management system of hybrid energy storage in a hybrid electric vehicle[J]. Proceedings of the CSEE, 2014, 34(S1): 195-203. (in Chinese)
    [9] 陈欢, 林程, 熊瑞. 车用复合电源系统在线自适应能量管理[J]. 电工技术学报, 2020, 35(S2): 644-651.

    CHEN H, LIN C, XIONG R. Online adaptive energy management strategy for a hybrid energy storage system in electric vehicles[J]. Transactions of China Electrotechnical Society, 2020, 35(S2): 644-651. (in Chinese)
    [10] HU J J, JIANG X Y, JIA M X, et al. Energy management strategy for the hybrid energy storage system of pure electric vehicle considering traffic information[J]. Applied Sciences, 2018, 8(8): 1266. doi: 10.3390/app8081266
    [11] WANG Y Z, WANG W D, ZHAO Y L, et al. A fuzzy-logic power management strategy based on markov random prediction for hybrid energy storage systems[J]. Energies, 2016, 9(1): 25. doi: 10.3390/en9010025
    [12] 胡杰, 王明, 刘迪, 等. 基于交通信息的复合电源系统控制策略优化[J]. 汽车工程, 2021, 43(5): 675-682.

    HU J, WANG M, LIU D, et al. Optimization of control strategy for hybrid power system based on traffic information[J]. Automotive Engineering, 2021, 43(5): 675-682. (in Chinese)
    [13] 汪伟, 罗金, 王汝佳, 等. 纯电动汽车工况识别和能量控制策略研究[J]. 机械科学与技术, 2021, 40(9): 1444-1450.

    WANG W, LUO J, WANG R, et al. Research on operating condition identification and energy control strategy of pure electric vehicle[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(9): 1444-1450. (in Chinese)
    [14] 安小宇, 李元丰, 孙建彬, 等. 基于模糊逻辑的电动汽车双源混合储能系统能量管理策略[J]. 电力系统保护与控制, 2021, 49(16): 135-142.

    AN X Y, LI Y F, SUN J B, et al. Energy management strategy of a dual-source hybrid energy storage system for electric vehicles based on fuzzy logic[J]. Power System Protection and Control, 2021, 49(16): 135-142. (in Chinese)
    [15] 宋绍剑, 魏泽, 刘延扬, 等. 锂电池和超级电容混合电动汽车的能量管理[J]. 控制工程, 2019, 36(12): 2272-2277.

    SONG S J, WEI Z, LIU Y Y, et al. Research on energy management for ultracapacitor/lithium battery hybrid electric vehicles[J]. Control Engineering of China, 2019, 36(12): 2272-2277. (in Chinese)
    [16] 谢星, 周苏, 王廷宏, 等. 基于Cruise/Simulink的车用燃料电池/蓄电池混合动力的能量管理策略仿真[J]. 汽车工程, 2010, 32(5): 373-378.

    XIE X, ZHOU S, WANG T H, et al. A Simulation on energy management strategy for the power system of a fuel cell/battery HEV based on Cruise/Simulink[J]. Automotive Engineering, 2010, 32(5): 373-378. (in Chinese)
    [17] HU J, LIU D, DU C Q, et al. Intelligent energy management strategy of hybrid energy storage system for electric vehicle based on driving pattern recognition[J]. Energy, 2020, 198: 117298. doi: 10.1016/j.energy.2020.117298
    [18] 卢东斌, 欧阳明高, 谷靖, 等. 电动汽车永磁同步电机最优制动能量回馈控制[J]. 中国电机工程学报, 2013, 33(3): 83-91.

    LU D B, OUYANG M G, GU J, et al. Optimal regenerative braking control for permanent magnet synchronous motors in electric vehicles[J]. Proceedings of the CSEE, 2013, 33(3): 83-91. (in Chinese)
    [19] 王峰, 方宗德, 祝小元. 纯电动汽车新型动力传动装置的匹配仿真与优化[J]. 汽车工程, 2011, 33(9): 805-808.

    WANG F, FANG Z D, ZHU X Y. Matching, simulation and optimization of the new power transmission device for an electric vehicle[J]. Automotive Engineering, 2011, 33(9): 805-808. (in Chinese)
    [20] 朱福顺, 何洪文, 林逸, 等. 基于CRUISE的复合电源能量管理系统研究[J]. 计算机仿真, 2013, 30(1): 219-222. doi: 10.3969/j.issn.1006-9348.2013.01.051

    ZHU F S, HE H W, LIN Y, et al. Study on energy management system for hybrid power system based on CRUISE[J]. Computer Simulation, 2013, 30(1): 219-222. (in Chinese) doi: 10.3969/j.issn.1006-9348.2013.01.051
    [21] 曾小华, 王庆年, 宋大凤. 汽车功率需求的简单求解方法[J]. 吉林大学学报(工学版), 2011, 41(3): 613-617.

    ZENG X H, WANG Q N, SONG D F. Simplified method to solve vehicle power demand[J]. Journal of Jilin University(Engineering and Technology Edition), 2011, 41(3): 613-617. (in Chinese)
    [22] 祖炳洁, 马驰, 高坤. 纯电动汽车动力传动参数的设计与计算[J]. 农业装备与车辆工程, 2021, 59(7): 50-53. doi: 10.3969/j.issn.1673-3142.2021.07.012

    ZU B J, MA C, GAO K. Design and calculation of power transmission parameters of pure electric vehicle[J]. Agricultural Equipment & Vehicle Engineering, 2021, 59(7): 50-53. (in Chinese) doi: 10.3969/j.issn.1673-3142.2021.07.012
    [23] LIU C, WANG Y J, WANG L, et al. Load-adaptive real-time energy management strategy for battery/ultracapacitor hybrid energy storage system using dynamic programming optimization[J]. Journal of Power Sources, 2019, 438: 227024. doi: 10.1016/j.jpowsour.2019.227024
    [24] HU T D, LI Y W, ZHANG Z, et al. Energy management strategy of hybrid energy storage system based on road slope information[J]. Energies, 2021, 14(9): 2358. doi: 10.3390/en14092358
  • 加载中
图(8) / 表(8)
计量
  • 文章访问数:  65
  • HTML全文浏览量:  31
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-19
  • 网络出版日期:  2024-03-08
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回