留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

跨尺度结构智能优化方法与快速设计

霍树林 江和昕 宋贤海 周恩临 何智成

霍树林,江和昕,宋贤海, 等. 跨尺度结构智能优化方法与快速设计[J]. 机械科学与技术,2024,43(2):358-365 doi: 10.13433/j.cnki.1003-8728.20220237
引用本文: 霍树林,江和昕,宋贤海, 等. 跨尺度结构智能优化方法与快速设计[J]. 机械科学与技术,2024,43(2):358-365 doi: 10.13433/j.cnki.1003-8728.20220237
HUO Shulin, JIANG Hexin, SONG Xianhai, ZHOU Enlin, HE Zhicheng. Intelligent Optimization Method and Rapid Design of Cross-scale Structure[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(2): 358-365. doi: 10.13433/j.cnki.1003-8728.20220237
Citation: HUO Shulin, JIANG Hexin, SONG Xianhai, ZHOU Enlin, HE Zhicheng. Intelligent Optimization Method and Rapid Design of Cross-scale Structure[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(2): 358-365. doi: 10.13433/j.cnki.1003-8728.20220237

跨尺度结构智能优化方法与快速设计

doi: 10.13433/j.cnki.1003-8728.20220237
基金项目: 国家重点研发计划(升力翼)(2020YFA0710904-03)、国家自然基金联合基金项目(U20A20285)、湖南省杰出青年基金项目(2021JJ10016)及高新技术产业科技创新引领计划(2020GK4062)
详细信息
    作者简介:

    霍树林,硕士研究生,947428318@qq.com

    通讯作者:

    宋贤海,高级工程师,硕士生导师,631961696@qq.com

  • 中图分类号: TG156

Intelligent Optimization Method and Rapid Design of Cross-scale Structure

  • 摘要: 跨尺度拓扑优化设计极大激发了结构轻量化潜力,在先进装备的开发中具有重要作用。然而基于传统有限元的结构拓扑优化算法难以适应产品快速迭代的需求。为此,本文提出了一种基于耦合深度学习的跨尺度拓扑优化方法,通过集成残差神经网络(Resnet)、U-net架构及SEnet中的注意力机制,建立快速生成双尺度拓扑结构的深度学习模型。模型训练数据利用双向渐进结构优化算法产生,并用一组全新的数据对模型进行测试。数值算例表明,本文提出的深度学习模型可以高效且准确的生成基于各种边界下的宏观材料分布与微观拓扑结构。
  • 图  1  双尺度优化系统示意图

    Figure  1.  Schematic diagram of a dual scale optimization system

    图  2  边界约束及相应的多层级结构

    Figure  2.  Boundary constraints and corresponding multi-layer structures

    图  3  X方向力及边界条件,Y方向力及边界条件, 体积约束

    Figure  3.  X-direction force and boundary conditions, Y-direction force and boundary conditions, volume constraints

    图  4  Resnet中的残差块示意图

    Figure  4.  Schematic diagram of residual blocks in Resnet

    图  5  SE模块示意图

    Figure  5.  Schematic diagram of SE module

    图  6  耦合神经网络模型架构 和 Resnet-SE模块

    Figure  6.  Coupled neural network model architecture and resnet-SE module

    图  7  针对宏观构型的训练历史参数的变化

    Figure  7.  Changes in training history parameters for macroscopic configurations

    图  8  针对微观构型的训练历史参数的变化

    Figure  8.  Changes in training history parameters for micro configurations

    表  1  深度学习模型和BESO方法生成的二维多层级拓扑优化结构的比较(从测试集中随机选取的10个样本)

    Table  1.   Comparison of 2D multi-level topology optimization structures generated by deep learning models and BESO methods (10 samples randomly selected from the test set)

    边界条件和负载 BESO生成的
    宏观结构
    神经网络生成的
    宏观结构
    BESO生成的
    微观结构
    神经网络生成的
    微观结构
    Dice
    $ \begin{gathered} \theta = {105^ \circ } \\ {V_{\text{f}}} = 0.8 \\ \end{gathered} $ 宏观:0.957
    微观:0.933
    $ \begin{gathered} \theta = {50^ \circ } \\ {V_{\text{f}}} = 0.65 \\ \end{gathered} $ 宏观:0.974
    微观:0.962
    $ \begin{gathered} \theta = {120^ \circ } \\ {V_{\text{f}}} = 0.55 \\ \end{gathered} $ 宏观:0.934
    微观:0.942
    $ \begin{gathered} \theta = {135^ \circ } \\ {V_{\text{f}}} = 0.78 \\ \end{gathered} $ 宏观:0.959
    微观:0.942
    $ \begin{gathered} \theta = {40^ \circ } \\ {V_{\text{f}}} = 0.68 \\ \end{gathered} $ 宏观:0.956
    微观:0.951
    $ \begin{gathered} \theta = {10^ \circ } \\ {V_{\text{f}}} = 0.80 \\ \end{gathered} $ 宏观:0.958
    微观:0.946
    $ \begin{gathered} \theta = {20^ \circ } \\ {V_{\text{f}}} = 0.60 \\ \end{gathered} $ 宏观:0.953
    微观:0.936
    $ \begin{gathered} \theta = {25^ \circ } \\ {V_{\text{f}}} = 0.55 \\ \end{gathered} $ 宏观:0.961
    微观:0.988
    $ \begin{gathered} \theta = {175^ \circ } \\ {V_{\text{f}}} = 0.65 \\ \end{gathered} $ 宏观:0.946
    微观:0.932
    $ \begin{gathered} \theta = {75^ \circ } \\ {V_{\text{f}}} = 0.70 \\ \end{gathered} $ 宏观:0.945
    微观:0.931
    下载: 导出CSV

    表  2  有限元方法与耦合深度学习方法计算时间的比较

    Table  2.   Comparison of computational time between finite element method and coupled deep learning method

    编号 有限元方法的计算时间/s 深度学习的计算时间/s
    1 116.76 5.36
    2 131.26 5.37
    3 216.37 5.32
    4 124.70 5.24
    5 120.76 5.12
    6 116.79 5.38
    7 140.07 5.51
    8 208.86 5.45
    9 153.49 5.42
    10 106.51 5.46
    平均 143.56 5.37
    下载: 导出CSV
  • [1] 张国锋, 徐雷, 王鑫, 等. 面向连续体结构拓扑优化的分区密度修正敏度过滤方法研究[J]. 机械科学与技术, 2022, 41(11): 1641-1649.

    ZHANG G F, XU L, WANG X, et al. Partition density modified sensitivity filtering method for topology optimization of continuum structure[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(11): 1641-1649. (in Chinese)
    [2] CHUANG C H, CHEN S K, YANG R J, et al. Topology optimization with additive manufacturing consideration for vehicle load path development[J]. International Journal for Numerical Methods in Engineering, 2018, 113(8): 1434-1445. doi: 10.1002/nme.5549
    [3] 舒定真, 郭伟超, 苏力争, 等. 利用聚类分析的宏细观多尺度并行拓扑优化设计方法研究[J]. 机械科学与技术, 2023, 42(4): 521-529.

    SHU D Z, GUO W C, SU L Z, et al. Investigation of macro and micro multiscale concurrent topology optimization design with cluster analysis[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(4): 521-529. (in Chinese)
    [4] SHI G H, GUAN C Q, QUAN D L, et al. An aerospace bracket designed by thermo-elastic topology optimization and manufactured by additive manufacturing[J]. Chinese Journal of Aeronautics, 2020, 33(4): 1252-1259. doi: 10.1016/j.cja.2019.09.006
    [5] BENDSØE M P, SIGMUND O. Material interpolation schemes in topology optimization[J]. Archive of Applied Mechanics, 1999, 69(9-10): 635-654. doi: 10.1007/s004190050248
    [6] XIE Y M, STEVEN G P. A simple evolutionary procedure for structural optimization[J]. Computers & Structures, 1993, 49(5): 885-896.
    [7] QUERIN O M, STEVEN G P, XIE Y M. Evolutionary structural optimisation (ESO) using a bidirectional algorithm[J]. Engineering Computations, 1998, 15(8): 1031-1048. doi: 10.1108/02644409810244129
    [8] WANG S Y, WANG M Y. Radial basis functions and level set method for structural topology optimization[J]. International Journal for Numerical Methods in Engineering, 2006, 65(12): 2060-2090. doi: 10.1002/nme.1536
    [9] HUANG X, RADMAN A, XIE Y M. Topological design of microstructures of cellular materials for maximum bulk or shear modulus[J]. Computational Materials Science, 2011, 50(6): 1861-1870. doi: 10.1016/j.commatsci.2011.01.030
    [10] GAO J, LUO Z, LI H, et al. Topology optimization for multiscale design of porous composites with multi-domain microstructures[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 344: 451-476.
    [11] 付君健, 孙鹏飞, 杜义贤, 等. 基于子结构法的多层级结构拓扑优化[J]. 中国机械工程, 2021, 32(16): 1937-1944. doi: 10.3969/j.issn.1004-132X.2021.16.006

    FU J J, SUN P F, DU Y X, et al. Hierarchical structure topology optimization based on substructure method[J]. China Mechanical Engineering, 2021, 32(16): 1937-1944. (in Chinese) doi: 10.3969/j.issn.1004-132X.2021.16.006
    [12] LI H, LUO Z, XIAO M, et al. A new multiscale topology optimization method for multiphase composite structures of frequency response with level sets[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 356: 116-144. doi: 10.1016/j.cma.2019.07.020
    [13] YU Y Y, HUR T, JUNG J, et al. Deep learning for determining a near-optimal topological design without any iteration[J]. Structural and Multidisciplinary Optimization, 2019, 59(3): 787-799. doi: 10.1007/s00158-018-2101-5
    [14] WHITE D A, ARRIGHI W J, KUDO J, et al. Multiscale topology optimization using neural network surrogate models[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 346: 1118-1135. doi: 10.1016/j.cma.2018.09.007
    [15] 叶红玲, 李继承, 魏南, 等. 基于深度学习的跨分辨率结构拓扑优化设计方法[J]. 计算力学学报, 2021, 38(4): 430-436. doi: 10.7511/jslx20210509403

    YE H L, LI J C, WEI N, et al. Cross-resolution acceleration design for structural topology optimization based on deep learning[J]. Chinese Journal of Computational Mechanics, 2021, 38(4): 430-436. (in Chinese) doi: 10.7511/jslx20210509403
    [16] QIU C, DU S Y, YANG J L. A deep learning approach for efficient topology optimization based on the element removal strategy[J]. Materials & Design, 2021, 212: 110179.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  56
  • HTML全文浏览量:  21
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-18
  • 网络出版日期:  2024-03-08
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回