留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

声学超材料和亥姆霍兹共振结构的自供能传感器

马珂婧 陈虎越 张文明

马珂婧, 陈虎越, 张文明. 声学超材料和亥姆霍兹共振结构的自供能传感器[J]. 机械科学与技术, 2024, 43(1): 110-116. doi: 10.13433/j.cnki.1003-8728.20220235
引用本文: 马珂婧, 陈虎越, 张文明. 声学超材料和亥姆霍兹共振结构的自供能传感器[J]. 机械科学与技术, 2024, 43(1): 110-116. doi: 10.13433/j.cnki.1003-8728.20220235
MA Kejing, CHEN Huyue, ZHANG Wenming. A Self-powered Sensor of Acoustic Metamaterial and Helmholtz Resonator Structure[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(1): 110-116. doi: 10.13433/j.cnki.1003-8728.20220235
Citation: MA Kejing, CHEN Huyue, ZHANG Wenming. A Self-powered Sensor of Acoustic Metamaterial and Helmholtz Resonator Structure[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(1): 110-116. doi: 10.13433/j.cnki.1003-8728.20220235

声学超材料和亥姆霍兹共振结构的自供能传感器

doi: 10.13433/j.cnki.1003-8728.20220235
基金项目: 

国家自然科学基金项目 11625208

详细信息
    作者简介:

    马珂婧, 博士研究生, Sarah_mkj@163.com

    通讯作者:

    张文明, 教授, 博士生导师, wenmingz@sjtu.edu.cn

  • 中图分类号: TH15

A Self-powered Sensor of Acoustic Metamaterial and Helmholtz Resonator Structure

  • 摘要: 随着物联网的发展,自供能声学传感器得到了广泛关注。然而,压电传感器的灵敏度等关键指标难以进一步提升。声学超材料能以传统材料无法实现的方式操控声波,为新型声学传感器的设计提供了新思路。本文设计了一种声学超材料和亥姆霍兹谐振结构的自供能声学传感器,并验证了具有缺陷的声学超材料能够聚焦声能;此外,亥姆霍兹谐振器能将聚焦在声学超材料缺陷处的能量进一步放大,传输比超过40 mV/Pa,能满足小型传感器的自供能需求。实验结果表明: 与仅有局部缺陷的声学超材料传感器相比,基于亥姆霍兹谐振器的声学超材料传感器具有更高的灵敏度和信噪比。
  • 图  1  局域共振声学超材料的周期结构与点缺陷

    Figure  1.  The periodic structure and point defect of the acoustic metamaterial

    图  2  局域共振声学超材料等效模型

    Figure  2.  The equivalent model of the acoustic metamaterial

    图  3  局域共振声学超材料单胞能带结构

    Figure  3.  energy band structure of the unit cell of acoustic metamaterial

    图  4  局域共振声学超材料超胞能带结构

    Figure  4.  The energy band structure of the supercell

    图  5  Helmholtz谐振器模型

    Figure  5.  The model of the Helmholtz resonator

    图  6  Helmholtz谐振器等效弹簧振子

    Figure  6.  The equivalent spring oscillator model of the Helmholtz resonator

    图  7  超材料与Helmholtz共振结构

    Figure  7.  The metamaterial and the Helmholtz resonance structure

    图  8  声学超材料结构缺陷模式位移场

    Figure  8.  The displacement field of the acoustic metamaterial defect mode

    图  9  超材料与Helmholtz共振结构共振模式位移场

    Figure  9.  The displacement field of the metamaterial and Helmholtz resonance structural resonant mode

    图  10  超材料与Helmholtz共振结构模型

    Figure  10.  The model of the metamaterial and Helmholtz resonance structure

    图  11  AMS和AMHS的传输谱

    Figure  11.  The transmission spectra of the AMS and AMHS

    图  12  不同声压下AMS的响应曲线

    Figure  12.  The response curve of the AMS under different sound pressure

    图  13  不同声压下AMHS的响应曲线

    Figure  13.  The response curve of the AMHS under different sound pressure

    图  14  AMS的信号电压和噪声电压

    Figure  14.  Signal voltage and noise voltage of the AMS at 1-Pa pressure (in blue) and at no input (in black)

    图  15  AMHS的信号电压和噪声电压

    Figure  15.  Signal voltage and noise voltage of the AMHS at 1-Pa pressure (in red) and at no input (in black)

    表  1  共振结构的材料参数

    Table  1.   The material parameters of the resonance structure

    材料 参数 数值
    硅胶 密度 1 230.50 kg/m3
    杨氏模量 9.38 MPa
    泊松比 0.49
    密度 2 750 kg/m3
    杨氏模量 70 GPa
    泊松比 0.33
    聚乳酸 密度 1 240 kg/m3
    杨氏模量 0.38 GPa
    泊松比 0.35
    PZT-5H 密度 7 450 kg/m3
    柔度s11 7.69×10-11 m2/N
    柔度s12 -4.78×10-12 m2/N
    压电常数d31 -1.86×10-10 C/N
    压电常数d33 6.70×10-10 C/N
    相对介电常数 5 800
    下载: 导出CSV
  • [1] LI L, ZHANG X M, SONG C Y, et al. Progress, challenges, and perspective on metasurfaces for ambient radio frequency energy harvesting[J]. Applied Physics Letters, 2020, 116(6): 060501. doi: 10.1063/1.5140966
    [2] MATHESON N J, LEHNER P J. How does SARS-CoV-2 cause COVID-19?[J]. Science, 2020, 369(6503): 510-511. doi: 10.1126/science.abc6156
    [3] JONES K E, PATEL N G, LEVY M A, et al. Global trends in emerging infectious diseases[J]. Nature, 2008, 451(7181): 990-993. doi: 10.1038/nature06536
    [4] ALI W R, PRASAD M. Piezoelectric MEMS based acoustic sensors: a review[J]. Sensors and Actuators A: Physical, 2020, 301: 111756. doi: 10.1016/j.sna.2019.111756
    [5] WANG W Y, STIPP P N, OUARAS K, et al. Broad bandwidth, self-powered acoustic sensor created by dynamic near-field electrospinning of suspended, transparent piezoelectric nanofiber mesh[J]. Small, 2020, 16(28): 2000581. doi: 10.1002/smll.202000581
    [6] HAN J H, KWAK J H, JOE D J, et al. Basilar membrane- inspired self-powered acoustic sensor enabled by highly sensitive multi tunable frequency band[J]. Nano Energy, 2018, 53: 198-205. doi: 10.1016/j.nanoen.2018.08.053
    [7] HAN J H, BAE K M, HONG S K, et al. Machine learning-based self-powered acoustic sensor for speaker recognition[J]. Nano Energy, 2018, 53: 658-665. doi: 10.1016/j.nanoen.2018.09.030
    [8] WANG H S, HONG S K, HAN J H, et al. Biomimetic and flexible piezoelectric mobile acoustic sensors with multiresonant ultrathin structures for machine learning biometrics[J]. Science Advances, 2021, 7(7): eabe5683. doi: 10.1126/sciadv.abe5683
    [9] CHEN Y Y, LIU H J, REILLY M, et al. Enhanced acoustic sensing through wave compression and pressure amplification in anisotropic metamaterials[J]. Nature Communications, 2014, 5: 5247. doi: 10.1038/ncomms6247
    [10] ZHANG J, RUI W, MA C R, et al. Remote whispering metamaterial for non-radiative transceiving of ultra-weak sound[J]. Nature Communications, 2021, 12(1): 3670. doi: 10.1038/s41467-021-23991-3
    [11] MA K J, TAN T, LIU F R, et al. Acoustic energy harvesting enhanced by locally resonant metamaterials[J]. Smart Materials and Structures, 2020, 29(7): 075025. doi: 10.1088/1361-665X/ab8fcc
    [12] CUMMER S A, CHRISTENSEN J, ALÙ A. Controlling sound with acoustic metamaterials[J]. Nature Reviews Materials, 2016, 1(3): 16001. doi: 10.1038/natrevmats.2016.1
    [13] XU J W, LI S L, TANG J. Customized shaping of vibration modes by acoustic metamaterial synthesis[J]. Smart Materials and Structures, 2018, 27(4): 045001. doi: 10.1088/1361-665X/aaad9f
    [14] JO S H, YOON H, SHIN Y C, et al. Designing a phononic crystal with a defect for energy localization and harvesting: supercell size and defect location[J]. International Journal of Mechanical Sciences, 2020, 179: 105670. doi: 10.1016/j.ijmecsci.2020.105670
    [15] 肖勇. 局域共振型结构的带隙调控与减振降噪特性研究[D]. 长沙: 国防科学技术大学, 2012.

    XIAO Y. Locally resonant structures: band gap tuning and properties of vibration and noise reduction[D]. Changsha: National University of Defense Technology, 2012. (in Chinese)
    [16] BLACKSTOCK D T. Fundamentals of physical acoustics[M]. New York: Wiley, 2001.
    [17] MA K J, TAN T, YAN Z M, et al. Metamaterial and Helmholtz coupled resonator for high-density acoustic energy harvesting[J]. Nano Energy, 2021, 82: 105693. doi: 10.1016/j.nanoen.2020.105693
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  103
  • HTML全文浏览量:  38
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-09
  • 刊出日期:  2024-01-25

目录

    /

    返回文章
    返回