留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混合动力汽车功率分流传动系统扭转振动及其影响因素研究

王欢 葛帅帅 姜艳军 张志刚 郭栋 李明

王欢,葛帅帅,姜艳军, 等. 混合动力汽车功率分流传动系统扭转振动及其影响因素研究[J]. 机械科学与技术,2024,43(2):203-211 doi: 10.13433/j.cnki.1003-8728.20220233
引用本文: 王欢,葛帅帅,姜艳军, 等. 混合动力汽车功率分流传动系统扭转振动及其影响因素研究[J]. 机械科学与技术,2024,43(2):203-211 doi: 10.13433/j.cnki.1003-8728.20220233
WANG Huan, GE Shuaishuai, JIANG Yanjun, ZHANG Zhigang, GUO Dong, LI Ming. Torsional Vibration Analysis and Influencing Factors of Power Split Hybrid Transmission System[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(2): 203-211. doi: 10.13433/j.cnki.1003-8728.20220233
Citation: WANG Huan, GE Shuaishuai, JIANG Yanjun, ZHANG Zhigang, GUO Dong, LI Ming. Torsional Vibration Analysis and Influencing Factors of Power Split Hybrid Transmission System[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(2): 203-211. doi: 10.13433/j.cnki.1003-8728.20220233

混合动力汽车功率分流传动系统扭转振动及其影响因素研究

doi: 10.13433/j.cnki.1003-8728.20220233
基金项目: 国家重点研发计划重点专项(2018YFB0106100)、国家自然科学基金项目(52005067)、重庆市自然科学基金项目(cstc2019jcyj-msxmX0733,cstc2021jcyj-msxmX0555)、重庆市教育委员会科学技术研究计划项目(KJQN201901115)及重庆理工大学科研启动基金项目(2019ZD94)
详细信息
    作者简介:

    王欢,讲师,硕士生导师,博士,huanwang@cqut.edu.cn

    通讯作者:

    葛帅帅,副教授,硕士生导师,博士,ge_shuaishuai@163.com

  • 中图分类号: U463.2

Torsional Vibration Analysis and Influencing Factors of Power Split Hybrid Transmission System

  • 摘要: 针对某款混合动力汽车,综合考虑发动机、电机、复合行星齿轮机构、离合器、减速器、差速器和半轴等部件,采用集中质量法建立功率分流传动系统动力学模型。在此基础上,分析不同运行工况下传动系统固有频率和振型,分别研究电机和发动机激振频率与传动系统固有频率之间的关系,仿真分析扭转减振器刚度对传动系统固有频率的影响规律,通过改变扭转减振器刚度从而使得传动系统共振转速远离发动机常用工作区。
  • 图  1  混合动力汽车传动汽车传动系统结构

    Figure  1.  Structure of hybrid electric vehicle's transmission system

    图  2  复合行星齿轮机构

    Figure  2.  Composite planetary gear mechanism

    图  3  拉维娜式复合行星轮系结构图

    Figure  3.  Structure diagram of Lavina type composite planetary gear system

    图  4  复合行星齿轮的动力学模型

    Figure  4.  Dynamic model of composite planetary gear

    图  5  Weber能量法示图

    Figure  5.  Weber energy method

    图  6  Weber能量法啮合刚度曲线

    Figure  6.  Weber energy method's meshing stiffness curve

    图  7  离合器动力学模型

    Figure  7.  Clutch dynamics model

    图  8  纯电动工况1 ~ 3阶振型图

    Figure  8.  1-3th order vibration modes of pure electric operating conditions

    图  9  纯电动工况4 ~ 7阶振型图

    Figure  9.  4-7th order vibration modes of pure electric operating conditions

    图  10  混动中低速工况1 ~ 4阶振型图

    Figure  10.  1-4th order vibration modes of hybrid medium and low speed operating conditions

    图  11  混动中低速工况5 ~ 8阶振型图

    Figure  11.  5-8th order vibration modes of hybrid medium and low speed operating conditions

    图  12  混动高速巡航工作模式1 ~ 4阶振型图

    Figure  12.  1-4th order vibration modes of hybrid high-speed cruise operation mode

    图  13  混动高速巡航工作模式5 ~ 8阶振型图

    Figure  13.  5-8th order vibration modes of hybrid high-speed cruise operation mode

    图  14  电机的共振转速

    Figure  14.  Resonance speed of the motor

    图  15  发动机共振转速图

    Figure  15.  Resonance speed of the engine

    图  16  飞轮等效转动惯量与2阶振幅变化曲线

    Figure  16.  Equivalent moment of inertia of flywheel and second order amplitude variation curve

    图  17  车轮转动惯量与3阶振幅变化曲线

    Figure  17.  Wheel moment of inertia and third order amplitude variation curve

    图  18  扭转减振器刚度对2阶固有频率影响曲线

    Figure  18.  Influence curve of torsional shock absorber stiffness on second order natural frequency

    图  19  扭转减速器刚度与发动机共振转速关系曲线

    Figure  19.  Relationship curve between torsional reducer stiffness and engine resonance speed

    表  1  齿轮副啮合刚度

    Table  1.   Gear pair meshing stiffness

    齿轮副 啮合刚度108/(N·m−1
    小太阳轮−短行星齿轮 2.21
    小太阳轮−短行星齿轮 3.36
    短行星齿轮−长行星齿轮 3.64
    短行星齿轮−内齿圈 3.67
    外齿圈−减速器 4.33
    减速器−差速器 8.75
    下载: 导出CSV

    表  2  传动系统各部件参数

    Table  2.   Parameters of various components of the transmission system

    参数名称 数值
    飞轮等效转动惯量/(kg·m2 0.28
    行星架转动惯量/(kg·m2 0.0041
    小太阳轮电机E1等效转动惯量/(kg·m2 0.029
    大太阳轮电机E2等效转动惯量/(kg·m2 0.039
    齿圈等效转动惯量/(kg·m2 0.0056
    减速器等效转动惯量/(kg·m2 0.0062
    差速器等效转动惯量/(kg·m2 0.021
    驱动轮转动惯量/(kg·m2 1.82
    整车质量/kg 1300
    车轮半径/m 0.32
    扭转减振器刚度/(Nm·rad−1 610
    行星架轴刚度/(Nm·rad−1 500
    左半轴扭转刚度/(Nm·rad−1 4312
    右半轴扭转刚度/(Nm·rad−1 5434
    车轮扭转刚度/(Nm·rad−1 4500
    下载: 导出CSV

    表  3  电动工况传动系统固有频率

    Table  3.   Natural frequency of electric working condition transmission system

    阶数频率/Hz
    16.23
    269.01
    3506.93
    42322.18
    52322.18
    64020.73
    74427.19
    84427.19
    下载: 导出CSV

    表  4  混动中低速工况传动系统固有频率

    Table  4.   Natural frequency of hybrid medium and low speed transmission system

    阶数频率/Hz
    16.39
    231.42
    369.01
    4737.92
    52535.37
    62535.37
    73313.78
    84399.44
    下载: 导出CSV

    表  5  电动工况传动系统固有频率

    Table  5.   Natural frequency of electric working condition transmission system

    阶数频率/Hz
    16.38
    231.41
    369.01
    4736.46
    52346.53
    62346.53
    73554.4
    84436.58
    下载: 导出CSV
  • [1] 禹文林, 葛蕴珊, 王欣, 等. 混合动力汽车实际道路行驶排放特性研究[J]. 汽车工程, 2018, 40(10): 1139-1145.

    YU W L, GE Y S, WANG X, et al. A research on the real driving emission characteristics of hybrid electric vehicles[J]. Automotive Engineering, 2018, 40(10): 1139-1145. (in Chinese)
    [2] 严正峰, 尹大乐, 张农, 等. 汽车动力传动系统振动问题及解决方法综述[J]. 合肥工业大学学报(自然科学版), 2021, 44(3): 289-298.

    YAN Z F, YIN D L, ZHANG N, et al. Overview of vibration problems and solutions of automotive power transmission system[J]. Journal of Hefei University of Technology (Natural Science), 2021, 44(3): 289-298. (in Chinese)
    [3] CHAN C C, BOUSCAYROL A, CHEN K. Electric, hybrid, and fuel-cell vehicles: architectures and modeling[J]. IEEE Transactions on Vehicular Technology, 2010, 59(2): 589-598. doi: 10.1109/TVT.2009.2033605
    [4] 曾锐. 汽车动力传动系扭振分析及其对车辆振动影响研究[D]. 成都: 西南交通大学, 2014.

    ZENG R. Analysis of power driveline torsional vibration and its influence on vehicle vibration[D]. Chengdu: Southwest Jiaotong University, 2014. (in Chinese)
    [5] ZHOU W J, ZUO Y Y, ZHENG M Y. Analysis and optimization of the vibration and noise of a double planetary gear power coupling mechanism[J]. Shock and Vibration, 2018, 2018: 9048695.
    [6] LIU X L, SHANGGUAN W B, JING X J, et al. Vibration isolation analysis of clutches based on trouble shooting of vehicle accelerating noise[J]. Journal of Sound and Vibration, 2016, 382: 84-99. doi: 10.1016/j.jsv.2016.07.008
    [7] 梁伟智, 贾爽, 李慎龙, 等. 混合动力重卡行星传动系统振动噪声分析[J]. 机械设计与制造, 2021(8): 221-224. doi: 10.3969/j.issn.1001-3997.2021.08.051

    LIANG W Z, JIA S, LI S L, et al. Vibration and noise analysis of planetary transmission system of hybrid heavy truck[J]. Machinery Design & Manufacture, 2021(8): 221-224. (in Chinese) doi: 10.3969/j.issn.1001-3997.2021.08.051
    [8] 孟德建, 陈文龙, 张立军, 等. 典型工况与工作模式下混联式混合传动系统振动分析[J]. 同济大学学报(自然科学版), 2018, 46(9): 1270-1280.

    MENG D J, CHEN W L, ZHANG L J, et al. Vibration analysis of series-parallel hybrid powertrain system considering typical operating condition and modes[J]. Journal of Tongji University (Natural Science), 2018, 46(9): 1270-1280. (in Chinese)
    [9] 严正峰, 张嘉浩, 刘翼闻, 等. 混合动力传动系统限扭减振器设计及试验研究[J]. 汽车技术, 2021, 549(6): 41-46.

    YAN Z F, ZHANG J H, LIU Y W, et al. Design and experimental research on damper with torque limiter in hybrid powertrain[J]. Automobile Technology, 2021, 549(6): 41-46. (in Chinese)
    [10] 于福康. CVT混合动力汽车传动系统扭振分析与控制[D]. 长春: 吉林大学, 2019.

    YU F K. Torsional vibration analysis and control of transmission system of CVT hybrid electric vehicle[D]. Changchun: Jilin University, 2019. (in Chinese)
    [11] ZHANG L J, ZHANG S J, MENG D J, et al. Active and passive control of torsional vibration in vehicle hybrid powertrain system[R]. SAE, 2020.
    [12] SHIMODE K, ISHIZAKI K, KOMADA M. Machine learning based technology for reducing engine starting vibration of hybrid vehicles[R]. SAE, 2019.
    [13] ZHUANG W C, LI S B, ZHANG X W, et al. A survey of powertrain configuration studies on hybrid electric vehicles[J]. Applied Energy, 2020, 262: 114553. doi: 10.1016/j.apenergy.2020.114553
    [14] DEUR J, IVANOVIĆ V, ASSADIAN F, et al. Bond graph modeling of automotive transmissions and drivelines[J]. IFAC Proceedings Volumes, 2012, 45(2): 427-432. doi: 10.3182/20120215-3-AT-3016.00075
    [15] VADAMALU R S, BEIDL C. MPC for active torsional vibration reduction of hybrid electric powertrains[J]. IFAC-PapersOnLine, 2016, 49(11): 756-761. doi: 10.1016/j.ifacol.2016.08.110
    [16] 刘栋豪. 功率分流式混合动力汽车发动机启动瞬态动力学研究[D]. 上海: 上海交通大学, 2017.

    LIU D H. Dynamics study of a power-split hybrid electric vehicle during the engine start transition[D]. Shanghai: Shanghai Jiao Tong University, 2017. (in Chinese)
  • 加载中
图(19) / 表(5)
计量
  • 文章访问数:  103
  • HTML全文浏览量:  44
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-07
  • 网络出版日期:  2024-03-08
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回