留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

在单片机中应用卷积神经网络实现故障诊断

张岷涛 廖文豪 卿朝进

张岷涛,廖文豪,卿朝进. 在单片机中应用卷积神经网络实现故障诊断[J]. 机械科学与技术,2024,43(2):282-290 doi: 10.13433/j.cnki.1003-8728.20220228
引用本文: 张岷涛,廖文豪,卿朝进. 在单片机中应用卷积神经网络实现故障诊断[J]. 机械科学与技术,2024,43(2):282-290 doi: 10.13433/j.cnki.1003-8728.20220228
ZHANG Mintao, LIAO Wenhao, QING Chaojin. CNN Based Fault Diagnosis of R oll ing Bearings Using MCU[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(2): 282-290. doi: 10.13433/j.cnki.1003-8728.20220228
Citation: ZHANG Mintao, LIAO Wenhao, QING Chaojin. CNN Based Fault Diagnosis of R oll ing Bearings Using MCU[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(2): 282-290. doi: 10.13433/j.cnki.1003-8728.20220228

在单片机中应用卷积神经网络实现故障诊断

doi: 10.13433/j.cnki.1003-8728.20220228
基金项目: 四川省科技计划项目(2021JDRC0003)
详细信息
    作者简介:

    张岷涛,讲师,硕士,zhangmt@mail.xhu.edu.cn

    卿朝进:

  • 中图分类号: TG156

CNN Based Fault Diagnosis of R oll ing Bearings Using MCU

  • 摘要: 作者利用深度神经网络进行滚动轴承的智能故障诊断(IFD),将人工智能在低成本小型化平台上实现了应用。作者在文章中优化改进了二维神经网络(CNN2D)的神经网络架构,并将其部署到STM32H743VI单片机,实现了轴承故障振动信号的识别和分类。网络的训练和验证使用凯斯西储大学(CWRU)轴承故障数据集,并获得其中的包含10种故障类型的数据。使用基于Tensorflow深度学习框架的Keras工具对CNN2D的神经网络进行训练。验证可知该改进模型对故障识别准确度可以达到98.90%。利用CubeAI工具将网络部署至单片机内。通过串口与电脑进行通信获取随机轴承数据,实测每次诊断运行时间为约为19 ms。
  • 图  1  CNN2D主要调试与优化流程

    Figure  1.  Main debugging and optimization process of CNN2D

    图  2  CWRU实验中使用的滚动轴承结构

    Figure  2.  Rolling bearing structure used in CWRU experiments

    图  3  时间序列下的部分CWRU数据集数据

    Figure  3.  Part of the CWRU data set under the time series

    图  4  直接转化法过程

    Figure  4.  Direct conversion process

    图  5  直接转化法后生成的二维图像

    Figure  5.  Two-dimensional image generated by direct transformation method

    图  6  CNN2D验证模型完整结构

    Figure  6.  The complete structure of the CNN2D verification model

    图  7  Tanh函数图像

    Figure  7.  Tanh Function image

    图  8  CNN2D改进模型训练与验证的准确度

    Figure  8.  The CNN2D improved model’s accuracy of training and verification

    图  9  STM32H743VI芯片管脚图

    Figure  9.  Pin diagram of STM32H743VI

    表  1  CWRU数据集中获取的10种不同故障分类

    Table  1.   10 different fault classifications obtained in the CWRU data set

    编号 参数名称 代表数字 注解
    1 00-Normal 0 正常无故障
    2 07-Ball 1 0.1778 mm滚珠故障
    3 07-InnerRace 2 0.1778 mm内圈故障
    4 07-OuterRace6 3 0.1778 mm 6点钟外圈故障
    5 14-Ball 4 0.3556 mm滚珠故障
    6 14-InnerRace 5 0.3556 mm内圈故障
    7 14-OuterRace6 6 0.3556 mm 6点钟外圈故障
    8 21-Ball 7 0.5334 mm滚珠故障
    9 21-InnerRace 8 0.5334 mm内圈故障
    10 21-OuterRace6 9 0.5334 mm 6点钟外圈故障
    下载: 导出CSV

    表  2  CWRU数据集单个文件内部结构

    Table  2.   Internal structure of a single file of a CWRU data set

    编号 参数名称 内容 注解
    1 _header_ 包含MATLAB版本,实验平台、创建时间等信息
    2 _version_ 1.0 数据集版本
    3 _globals_
    4 X000_DE_time 一维数组 驱动端信号数据
    5 X000_FE_time 一维数组 风扇端信号数据
    6 X000_BA_time 一维数组 正常基准数据
    7 X000RPM 1797 每分钟转多少圈
    下载: 导出CSV

    表  3  CNN2D模型参数

    Table  3.   CNN2D model's parameters

    编号 网络层 卷积核大小 卷积核数量 步长
    1 二维卷积1 (10, 10) 4 1
    2 二维卷积2 (5, 5) 8 1
    3 最大池化1 (4, 4) 8 2
    4 二维卷积3 (3, 3) 16 1
    5 二维卷积4 (3, 3) 16 1
    6 最大池化2 (2, 2) 16 2
    7 二维卷积5 (3, 3) 32 1
    8 二维卷积6 (3, 3) 64 1
    9 最大池化3 (1, 1) 64 2
    10 全连接 32
    11 Softmax 10
    下载: 导出CSV

    表  4  CNN2D改进模型与其余验证模型性能比较

    Table  4.   Performance comparison between CNN2D improved model and other validated models

    模型 总参
    数量
    训练
    时间/s
    最佳
    准确度
    最小
    损失值
    CNN1D基准模型 753 210 3.3 0.9348 0.1767
    CNN2D基准模型 55 690 2.2 0.9528 0.1318
    CNN2D Tanh模型 55 690 2.2 0.9765 0.0678
    CNN2D改进模型 36 390 2.0 0.9890 0.0292
    下载: 导出CSV

    表  5  芯片相关引脚设定说明

    Table  5.   Chip-related pin setting instructions

    引脚功能设定功能说明
    PE3LEDLED灯
    PC13KEY按键
    PC14RCC-IN晶振输入
    PC15RCC-OUT晶振输出
    PA13DEBUG-JTMS-SWDIOSW接口调试DIO
    PA14DEBUG-JTMS-SWCLKSW接口调试CLK
    PB14USART1_TXUSART1串口TX
    PB15USART1_RXUSART1串口RX
    下载: 导出CSV

    表  6  库文件结构

    Table  6.   Structure of library file

    文件名 描述
    cwru_model_config.h 网络库配置文件
    cwru_model_generate_report.txt 网络库生成与运行过程的报告
    cwru_model_data.c 网络模型参数文件
    cwru_model_data.h 网络模型参数头文件
    cwru_model.c 各类网络库函数文件
    cwru_model.h 各类网络库函数头文件
    下载: 导出CSV

    表  7  网络模型资源消耗

    Table  7.   Resource consumption of network model

    指标数值
    MACC1238380
    FLASH142.15 KB
    RAM11.32 KB
    下载: 导出CSV
  • [1] DUAN L X, XIE M Y, WANG J J, et al. Deep learning enabled intelligent fault diagnosis: overview and applications[J]. Journal of Intelligent & Fuzzy Systems, 2018, 35(5): 5771-5784.
    [2] LIU R N, YANG B Y, ZIO E, et al. Artificial intelligence for fault diagnosis of rotating machinery: a review[J]. Mechanical Systems and Signal Processing, 2018, 108: 33-47. doi: 10.1016/j.ymssp.2018.02.016
    [3] KHAN S, YAIRI T. A review on the application of deep learning in system health management[J]. Mechanical Systems and Signal Processing, 2018, 107: 241-265. doi: 10.1016/j.ymssp.2017.11.024
    [4] ZHAO R, YAN R Q, CHEN Z H, et al. Deep learning and its applications to machine health monitoring[J]. Mechanical Systems and Signal Processing, 2019, 115: 213-237. doi: 10.1016/j.ymssp.2018.05.050
    [5] 阳建宏, 黎敏, 丁福焰, 等. 滚动轴承诊断现场实用技术[M]. 北京: 机械工业出版社, 2015.

    YANG J H, LI M, DING F Y, et al. On-site practical technology of rolling bearing diagnosis[M]. Beijing: China Machine Press, 2015. (in Chinese)
    [6] 隆军, 吴金强. STFT和HHT在风力机轴承故障诊断中的应用[J]. 噪声与振动控制, 2013, 33(4): 219-222. doi: 10.3969/j.issn.1006-1335.2013.04.045

    LONG J, WU J Q. Application of short time fourier transform and Hilbert-Huang transform in fault diagnosis of rolling bearings of windmill[J]. Noise and Vibration Control, 2013, 33(4): 219-222. (in Chinese) doi: 10.3969/j.issn.1006-1335.2013.04.045
    [7] KANKAR P K, SHARMA S C, HARSHA S P. Fault diagnosis of ball bearings using continuous wavelet transform[J]. Applied Soft Computing, 2011, 11(2): 2300-2312. doi: 10.1016/j.asoc.2010.08.011
    [8] BEN ALI J, FNAIECH N, SAIDI L, et al. Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals[J]. Applied Acoustics, 2015, 89: 16-27. doi: 10.1016/j.apacoust.2014.08.016
    [9] 沙美妤, 刘利国. 基于振动信号的轴承故障诊断技术综述[J]. 轴承, 2015(9): 59-63. doi: 10.3969/j.issn.1000-3762.2015.09.017

    SHA M Y, LIU L G. Review on fault diagnosis technology for bearings based on vibration signal[J]. Bearing, 2015(9): 59-63. (in Chinese) doi: 10.3969/j.issn.1000-3762.2015.09.017
    [10] SANTOS P, VILLA L F, REÑONES A, et al. An SVM-based solution for fault detection in wind turbines[J]. Sensors, 2015, 15(3): 5627-5648. doi: 10.3390/s150305627
    [11] PANDYA D H, UPADHYAY S H, HARSHA S P. Fault diagnosis of rolling element bearing with intrinsic mode function of acoustic emission data using APF-KNN[J]. Expert Systems with Applications, 2013, 40(10): 4137-4145. doi: 10.1016/j.eswa.2013.01.033
    [12] HAJNAYEB A, GHASEMLOONIA A, KHADEM S E, et al. Application and comparison of an ANN-based feature selection method and the genetic algorithm in gearbox fault diagnosis[J]. Expert Systems with Applications, 2011, 38(8): 10205-10209. doi: 10.1016/j.eswa.2011.02.065
    [13] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507. doi: 10.1126/science.1127647
    [14] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. doi: 10.1145/3065386
    [15] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
    [16] 雷亚国, 贾峰, 周昕, 等. 基于深度学习理论的机械装备大数据健康监测方法[J]. 机械工程学报, 2015, 51(21): 49-56. doi: 10.3901/JME.2015.21.049

    LEI Y G, JIA F, ZHOU X, et al. A deep learning-based method for machinery health monitoring with big data[J]. Journal of Mechanical Engineering, 2015, 51(21): 49-56. (in Chinese) doi: 10.3901/JME.2015.21.049
    [17] SMITH W A, RANDALL R B. Rolling element bearing diagnostics using the Case Western Reserve University data: a benchmark study[J]. Mechanical Systems and Signal Processing, 2015, 64-65: 100-131. doi: 10.1016/j.ymssp.2015.04.021
    [18] GAN M, WANG C, ZHU C. Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings[J]. Mechanical Systems and Signal Processing, 2016, 72-73: 92-104. doi: 10.1016/j.ymssp.2015.11.014
    [19] JIA F, LEI Y G, LIN J, et al. Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data[J]. Mechanical Systems and Signal Processing, 2016, 72-73: 303-315. doi: 10.1016/j.ymssp.2015.10.025
    [20] 吴定海, 任国全, 王怀光, 等. 基于卷积神经网络的机械故障诊断方法综述[J]. 机械强度, 2020, 42(5): 1024-1032.

    WU D H, REN G Q, WANG H G, et al. The review of mechanical fault diagnosis methods based on convolutional neural network[J]. Journal of Mechanical Strength, 2020, 42(5): 1024-1032. (in Chinese)
    [21] WANG Z G, OATES T. Imaging time-series to improve classification and imputation[C]//Twenty-Fourth International Joint Conference on Artificial Intelligence. Buenos Aires: AAAI Press, 2015: 3939-3945.
    [22] 薛妍, 沈宁, 窦东阳. 基于一维卷积神经网络的滚动轴承故障程度诊断[J]. 轴承, 2021(4): 48-54.

    XUE Y, SHEN N, DOU D Y. Fault degree diagnosis of rolling bearings based on one-dimensional convolutional neural network[J]. Bearing, 2021(4): 48-54. (in Chinese)
    [23] 郭梦洁, 杨梦卓, 马京九. 基于Keras的MNIST数据集识别模型[J]. 现代信息科技, 2019, 3(14): 18-19. doi: 10.3969/j.issn.2096-4706.2019.14.007

    GUO M J, YANG M Z, MA J J. Keras-based MNIST data set recognition model[J]. Modern Information Technology, 2019, 3(14): 18-19. (in Chinese) doi: 10.3969/j.issn.2096-4706.2019.14.007
    [24] 杨永翌. 基于Keras框架MNIST数据集识别方法研究[J]. 汽车实用技术, 2019, 44(23): 101-103. doi: 10.16638/j.cnki.1671-7988.2019.23.035

    YANG Y Y. Improvement of MNIST data set recognition method based on Keras framework[J]. Automobile Technology, 2019, 44(23): 101-103. (in Chinese) doi: 10.16638/j.cnki.1671-7988.2019.23.035
    [25] ZHAO M H, KANG M, TANG B P, et al. Deep residual networks with dynamically weighted wavelet coefficients for fault diagnosis of planetary gearboxes[J]. IEEE Transactions on Industrial Electronics, 2018, 65(5): 4290-4300. doi: 10.1109/TIE.2017.2762639
  • 加载中
图(9) / 表(7)
计量
  • 文章访问数:  47
  • HTML全文浏览量:  31
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-27
  • 网络出版日期:  2024-03-08
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回