留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弧焊机器人针对V形坡口的焊接路径规划设计与仿真分析

刘志诚 康辉民 刘厚才 欧阳普仁 崔正杰 段良辉

刘志诚,康辉民,刘厚才, 等. 弧焊机器人针对V形坡口的焊接路径规划设计与仿真分析[J]. 机械科学与技术,2024,43(3):457-465 doi: 10.13433/j.cnki.1003-8728.20220225
引用本文: 刘志诚,康辉民,刘厚才, 等. 弧焊机器人针对V形坡口的焊接路径规划设计与仿真分析[J]. 机械科学与技术,2024,43(3):457-465 doi: 10.13433/j.cnki.1003-8728.20220225
LIU Zhicheng, KANG Huimin, LIU Houcai, OUYANG Puren, CUI Zhengjie, DUAN Lianghui. Welding Path Planning Design and Simulation Analysis of Arc Welding Robot for V-shaped Groove[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(3): 457-465. doi: 10.13433/j.cnki.1003-8728.20220225
Citation: LIU Zhicheng, KANG Huimin, LIU Houcai, OUYANG Puren, CUI Zhengjie, DUAN Lianghui. Welding Path Planning Design and Simulation Analysis of Arc Welding Robot for V-shaped Groove[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(3): 457-465. doi: 10.13433/j.cnki.1003-8728.20220225

弧焊机器人针对V形坡口的焊接路径规划设计与仿真分析

doi: 10.13433/j.cnki.1003-8728.20220225
基金项目: 国家自然科学基金项目(51875198)与湘潭市联合基金项目(2021JJ50118)
详细信息
    作者简介:

    刘志诚,硕士研究生,liuzhicheng97805@163.com

    通讯作者:

    康辉民,教授,硕士生导师,xykanghm@163.com

  • 中图分类号: TG444

Welding Path Planning Design and Simulation Analysis of Arc Welding Robot for V-shaped Groove

  • 摘要: 为解决弧焊机器人面向中厚板V形坡口的焊接变形难题,通过分析传统逐层逐道堆积焊接容易引起热量聚集而导致焊接变形的特性,采用V形截面投影轨迹、空间平行往复轨迹及空间轮廓偏置轨迹相结合的方法建立V形焊层,实现焊接过程热量的快速散发。同时,在建立各轨迹方程解析式的基础上,应用Simufact Welding和MATLAB仿真软件对比分析了空间平行往复轨迹和空间轮廓偏置轨迹与传统逐层逐道焊的优缺点。为了进一步验证可行性,采用FANUC工业机器人进行试验。仿真和试验结果表明:以零件yz轴方向的变形量为依据,空间平行往复轨迹和空间轮廓偏置轨迹都优于传统的逐层逐道焊接方法,且后者更优于前者。但空间平行往复轨迹在轨道变换过程中机器人末端执行器的空间位姿调整相对简单、引入误差少、控制精度高,更适合于坡口较窄、长度较短的情况;而空间轮廓偏置轨迹更适用于坡口较宽,长度较长的情况。
  • 图  1  传统焊层与V形焊层堆积对比

    Figure  1.  Comparison between traditional welding layer stacking and V-shaped welding layer stacking

    图  2  轮廓点的选取

    Figure  2.  Selection of contour points

    图  3  空间平行往复轨迹

    Figure  3.  Space parallel reciprocating trajectory

    图  4  空间轮廓偏置轨迹焊道排布

    Figure  4.  Weld bead layout of spatial contour offset trajectory

    图  5  空间轮廓偏置轨迹

    Figure  5.  Spatial contour offset trajectory

    图  6  n的奇偶性分析示意图

    Figure  6.  The parity analysis of n

    图  7  总体焊接轨迹

    Figure  7.  Overall welding trajectory

    图  8  焊枪碰壁模型示意图

    Figure  8.  Model of the welding gun hitting the wall

    图  9  待焊钢板尺寸

    Figure  9.  Dimensions of steel plates to be welded

    图  10  仿真焊接变形量

    Figure  10.  Simulation of welding deformation

    图  11  焊接试验平台

    Figure  11.  Platform for welding test

    图  12  试验焊接变形量

    Figure  12.  Deformation of Test Welding

    表  1  热源模型参数及焊接参数的选择

    Table  1.   Selection of parameters for the heat source model and welding parameters

    焊道类型 热源参数 焊接参数
    前段/
    mm
    后段/
    mm
    宽度/
    mm
    深度/
    mm
    电流/
    A
    电压/
    V
    焊接速度/
    (cm·min−1
    打底焊道 4 7 5 7 340 28 28.000
    填充焊道 4 5 364 46.344
    盖面焊道 4 5 364 37.075
    下载: 导出CSV

    表  2  各方案焊接仿真变形量

    Table  2.   Deformation of welding simulation for each scheme

    方案 最大变形量
    y/ mm z/mm
    1 4.82 7.49
    2 2.87 6.27
    3 7.32 12.97
    下载: 导出CSV

    表  3  试验焊接参数

    Table  3.   Parameters for test welding

    焊道类型 焊接参数
    电流/A 电压/V 焊接速度/(cm·min−1
    打底焊道 245 25.8 35
    填充焊道 185 30
    盖面焊道 185 24
    下载: 导出CSV

    表  4  各方案焊接试验变形量

    Table  4.   Deformation for each welding test scheme

    方案 最大变形量
    y/mm z/mm
    1 3.8 4.2
    2 2.1 3.4
    3 4.2 6.7
    下载: 导出CSV
  • [1] XU F J, XIAO R Q, HOU Z, et al. Multi-layer multi-pass welding of medium thickness plate: technologies, advances and future prospects[M]//CHEN S B, ZHANG Y M, FENG Z L. Transactions on Intelligent Welding Manufacturing. Singapore: Springer, 2021: 3-33.
    [2] ZHANG H B, LU H, WANG S J, et al. Welding path planning algorithm for medium-thick plate based on process parameters[C]//Proceedings of the 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference. Chongqing: IEEE, 2021: 1142-1146.
    [3] 成利强, 王天琪, 侯仰强, 等. 中厚板V形坡口多层多道焊机器人焊接技术研究[J]. 焊接, 2018(2): 10-13.

    CHENG L Q, WANG T Q, HOU Y Q, et al. Robot welding technology of V groove for heavy plate based on multi layer and multi pass welding[J]. Welding & Joining, 2018(2): 10-13. (in Chinese)
    [4] ZHANG H J, LU H Z, CAI C B, et al. Robot path planning in multi-pass weaving welding for thick plates[M]//TARN T J, CHEN S B, FANG G. Robotic Welding, Intelligence and Automation. Berlin: Springer, 2011: 351-359.
    [5] 张华军. 大厚板高强钢双面双弧焊新工艺及机器人自动化焊接技术[D]. 哈尔滨: 哈尔滨工业大学, 2009.

    ZHANG H J. New technology of double-shded double arc welding and robot automatic welding for large thick plates of high strength steel[D]. Harbin: Harbin Institute of Technology, 2009. (in Chinese)
    [6] 郑银湖, 宋永胜, 邓静. 基于simufact. welding的中厚板多层多道焊数值模拟分析[J]. 电子世界, 2021(5): 95-97.

    ZHENG Y H, SONG Y S, DENG J. Numerical simulation analysis of multi-layer and multi pass welding of medium and heavy plate based on simulact. welding[J]. Electronics World, 2021(5): 95-97. (in Chinese)
    [7] 杨光远. 多层多道焊路径自动规划及双机器人协调研究[D]. 哈尔滨: 哈尔滨工业大学, 2008.

    YANG G Y. Automatic path planning of multi-pass welding and research on double-robotic coordination[D]. Harbin: Harbin Institute of Technology, 2008. (in Chinese)
    [8] FENG G J, WANG Y F, LUO W Z, et al. Comparison of welding residual stress and deformation induced by local vacuum electron beam welding and metal active gas arc welding in a stainless steel thick-plate joint[J]. Journal of Materials Research and Technology, 2021, 13: 1967-1979. doi: 10.1016/j.jmrt.2021.05.105
    [9] 杨广臣, 薛忠明, 张彦华. 厚板多层多道焊角变形分析方法[J]. 焊接学报, 2004, 25(1): 115-118. doi: 10.3321/j.issn:0253-360X.2004.01.030

    YANG G C, XUE Z M, ZHANG Y H. Prediction of angular distortion in thick plate multi-pass weld[J]. Journal of Welding, 2004, 25(1): 115-118. (in Chinese) doi: 10.3321/j.issn:0253-360X.2004.01.030
    [10] 胡啸, 崔川, 陈纬, 等. 厚板大坡口多层多道焊接轨迹规划算法[J]. 热加工工艺, 2022, 51(15): 102-106. doi: 10.14158/j.cnki.1001-3814.20202219

    HU X, CUI C, CHEN W, et al. Trajectory planning algorithm for thick plate multi-layer multi-pass welding with large groove[J]. Hot Working Technology, 2022, 51(15): 102-106. (in Chinese) doi: 10.14158/j.cnki.1001-3814.20202219
    [11] SHAHABI M, GHARIBLU H, BESCHI M, et al. Path planning methodology for multi-layer welding of intersecting pipes considering collision avoidance[J]. Robotica, 2021, 39(6): 945-958. doi: 10.1017/S026357472000082X
    [12] 温永策. 厚板机器人多层多道焊接路径规划研究[D]. 济南: 山东大学, 2019.

    WEN Y C. Study on path planning of multi-layer and multi-pass Robotic Welding for thick plate[D]. Ji′nan: Shandong University, 2019. (in Chinese)
    [13] 柏久阳, 王计辉, 林三宝, 等. 电弧増材制造厚壁结构焊道间距计算策略[J]. 机械工程学报, 2016, 52(10): 97-102. doi: 10.3901/JME.2016.10.097

    BAI J Y, WANG J H, LIN S B, et al. Model for multi-beads overlapping calculation in GTA-additive manufacturing[J]. Journal of Mechanical Engineering, 2016, 52(10): 97-102. (in Chinese) doi: 10.3901/JME.2016.10.097
    [14] SURYAKUMAR S, KARUNAKARAN K P, BERNARD A, et al. Weld bead modeling and process optimization in hybrid layered manufacturing[J]. Computer-Aided Design, 2011, 43(4): 331-344. doi: 10.1016/j.cad.2011.01.006
    [15] SUN S J, LIN H, ZHENG L M, et al. A real-time and look-ahead interpolation methodology with dynamic B-spline transition scheme for CNC machining of short line segments[J]. The International Journal of Advanced Manufacturing Technology, 2016, 84(5): 1359-1370.
    [16] 陈洁, 王玉华, 朱振新, 等. 厚板Invar合金多层多道焊反变形数值模拟[J]. 焊接学报, 2019, 40(4): 84-89. doi: 10.12073/j.hjxb.2019400105

    CHEN J, WANG Y H, ZHU Z X, et al. Numerical simulation of multi-layer and multi-passes welding anti-deformation for thick plate Invar alloy[J]. Transactions of the China Welding Institution, 2019, 40(4): 84-89. (in Chinese) doi: 10.12073/j.hjxb.2019400105
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  40
  • HTML全文浏览量:  6
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-23
  • 刊出日期:  2024-03-25

目录

    /

    返回文章
    返回