留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

尾气温差发电系统建模及影响规律分析

马宗正

马宗正. 尾气温差发电系统建模及影响规律分析[J]. 机械科学与技术,2024,43(2):351-357 doi: 10.13433/j.cnki.1003-8728.20220224
引用本文: 马宗正. 尾气温差发电系统建模及影响规律分析[J]. 机械科学与技术,2024,43(2):351-357 doi: 10.13433/j.cnki.1003-8728.20220224
MA Zongzheng. Model for Thermoelectric-generator Based on Engine Exhaust Gas and Influencing Law Analysis[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(2): 351-357. doi: 10.13433/j.cnki.1003-8728.20220224
Citation: MA Zongzheng. Model for Thermoelectric-generator Based on Engine Exhaust Gas and Influencing Law Analysis[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(2): 351-357. doi: 10.13433/j.cnki.1003-8728.20220224

尾气温差发电系统建模及影响规律分析

doi: 10.13433/j.cnki.1003-8728.20220224
基金项目: 河南省科技攻关项目(212102210332)与河南省高等学校青年骨干教师资助计划(2014GGJS-120)
详细信息
    作者简介:

    马宗正,博士、教授,zongzhengma@163.com

  • 中图分类号: TK417

Model for Thermoelectric-generator Based on Engine Exhaust Gas and Influencing Law Analysis

  • 摘要: 为了能够利用温差发电技术对高温发动机尾气中蕴含的能量进行回收利用,建立了温差发电系统能量计算方程,在基于实验结果验证的基础上对影响温差发电系统输出功率的系统参数及其规律进行了研究。结果表明,随着外部负载的增加,输出功率呈现先增加后下降的趋势;塞贝克系数的影响规律基本一致,输出功率也呈现先增加后降低的趋势;内阻值与输出功率呈类二次方关系,随着内阻值的增大,输出功率降低;导热系数的变化对于温差发电输出功率影响较大,当导热系数变大后,输出功率降低;冷热端散热系数对温差发电模块输出功率的影响基本一致,输出功率随散热系数的增加而增加。
  • 图  1  温差发电系统示意图

    Figure  1.  Schematic diagram of the TEG system

    图  2  温差发电装置示意图

    Figure  2.  Schematic diagram of the TEG system

    图  3  温差发电器能量传递示意图

    TA-环境温度;TB-冷源温度;QH-热端散去的热量;TH-模型热端面的温度;TC -传递到模型冷端的温度;QC-冷端吸收的热量;Ki-热端热传导系数;Ksink-冷端热传导系数;Ri-外接电路电阻;i-产生电流;N-温差发电模块个数。

    Figure  3.  Schematic diagram of energy transfer of the TEG system

    图  4  温差发电器仿真与实验结果对比

    Figure  4.  Comparison of simulation and experiment results

    图  5  外部负载对输出功率的影响

    Figure  5.  Effect of external load on output power

    图  6  外部负载变化时温度及温差的变化

    Figure  6.  Vibration of temperature during the change of external load

    图  7  温差一定时输出功率随外部负载的变化

    Figure  7.  Effect of external load on output power at fixed temperature difference

    图  8  塞贝克系数对输出功率的影响

    Figure  8.  Effect of see-beck coefficient on output power

    图  9  塞贝克系数变化时温度及温差的变化

    Figure  9.  Vibration of temperature during the see-beck coefficient change

    图  10  温差发电模块内阻值对输出功率的影响

    Figure  10.  Effect of inner resistance of TEG system on output power

    图  11  温差发电模块电流随内阻值变化

    Figure  11.  Vibration of current with the change of inner resistance

    图  12  温差发电模块导热系数对输出功率的影响

    Figure  12.  Effect of inner resistance on output power

    图  13  热端散热系数变化时温差发电模块输出功率的变化

    Figure  13.  Effect of heat dissipation coefficient of hot end on output power

    图  14  冷端散热系数变化时温差发电模块输出功率的变化

    Figure  14.  Effect of heat dissipation coefficient of cold end on output power

    表  1  EQ491型发动机参数

    Table  1.   Parameters of the EQ491 engine

    型式 行程 ×
    缸径/mm
    总排量/
    mL
    标定功率/kW,
    转速/(r·min−1)
    压缩
    冷却
    方式
    四冲程 76.95 × 90.82 1993 76, 5200 8.7:1 水冷
    下载: 导出CSV

    表  2  主要试验设备

    Table  2.   Main test equipment

    名称型号生产厂家
    热电偶K型江苏联能电子技术有限公司
    声级计HS5660D江西红声电子有限公司
    测控系统ET2000四川城邦测控技术有限公司
    万用表FLUKE-115C福禄克万用表
    风速仪GM8901深圳市聚茂源科技有限公司
    下载: 导出CSV

    表  3  仪器测量范围及精度

    Table  3.   Measurement and accuracy of the equipment

    项目 温度/℃ 电流/A 电压/V 风速/(m·s−1) 噪声/dB
    测量范围 0~800 0~10 0~60 0~45 25~130
    分辨率 0.10 0.01 0.01 0.10 0.10
    误差 ± 0.5% 1.5% ± 1% ± 1% ± 0.8
    下载: 导出CSV
  • [1] 沈紫嫣, 范武升, 刘方诚, 等. Bi2Te3基可穿戴温差发电器件的制备及性能[J]. 材料科学与工程学报, 2021, 39(2): 181-185.

    SHEN Z Y, FAN W S, LIU F C, et al. Fabrication of Bi2Te3-based wearable thermoelectric generator and its performance[J]. Journal of Materials Science and Engineering, 2021, 39(2): 181-185. (in Chinese)
    [2] 马宗正, 闫修鹏, 王鹏, 等. LNG冷能回收模拟试验台设计与开发[J]. 机械设计与制造, 2022(1): 124-127. doi: 10.3969/j.issn.1001-3997.2022.01.028

    MA Z Z, YAN X P, WANG P, et al. Designs and development of simulation test bed for LNG cold energy recovery based on thermoelectric Generator[J]. Machinery Design & Manufacture, 2022(1): 124-127. (in Chinese) doi: 10.3969/j.issn.1001-3997.2022.01.028
    [3] 马宗正, 马涛, 王新莉, 等. 冷却系统能量回收温差发电器设计方法研究[J]. 机械科学与技术, 2017, 36(5): 787-792. doi: 10.13433/j.cnki.1003-8728.2017.0521

    MA Z Z, MA T, WANG X L, et al. Design method for thermoelectric generator based on cooling system′s energy recovery[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(5): 787-792. (in Chinese) doi: 10.13433/j.cnki.1003-8728.2017.0521
    [4] TEMIZER İ, İLKILIÇ C. The performance and analysis of the thermoelectric generator system used in diesel engines[J]. Renewable and Sustainable Energy Reviews, 2016, 63: 141-151. doi: 10.1016/j.rser.2016.04.068
    [5] MA T, LU X, PANDIT J, et al. Numerical study on thermoelectric-hydraulic performance of a thermoelectric power generator with a plate-fin heat exchanger with longitudinal vortex generators[J]. Applied Energy, 2017, 185: 1343-1354. doi: 10.1016/j.apenergy.2016.01.078
    [6] LAN S, YANG Z J, CHEN R, et al. A dynamic model for thermoelectric generator applied to vehicle waste heat recovery[J]. Applied Energy, 2018, 210: 327-338. doi: 10.1016/j.apenergy.2017.11.004
    [7] DEMIR M E, DINCER I. Performance assessment of a thermoelectric generator applied to exhaust waste heat recovery[J]. Applied Thermal Engineering, 2017, 120: 694-707. doi: 10.1016/j.applthermaleng.2017.03.052
    [8] LOBUFETS Y. Thermoelectric generator for utilizing cold energy of cryogen liquids[J]. Journal of Electronic Materials, 2019, 48(9): 5491-5496. doi: 10.1007/s11664-019-07392-3
    [9] 周卫琪, 张军波, 罗丁, 等. 基于MPPT算法的温差发电回收效率研究[J]. 电源技术, 2021, 45(8): 1066-1069. doi: 10.3969/j.issn.1002-087X.2021.08.028

    ZHOU W Q, ZHANG J B, LUO D, et al. Research on recovery efficiency of thermoelectric generation based on MPPT algorithm[J]. Chinese Journal of Power Sources, 2021, 45(8): 1066-1069. (in Chinese) doi: 10.3969/j.issn.1002-087X.2021.08.028
    [10] HATZIKRANIOTIS E. On the recovery of wasted heat using a commercial thermoelectric device[J]. Acta Physica Polonica, 2012, 121(1): 286-289.
    [11] WANG Y P, LI S, XIE X, et al. Performance evaluation of an automotive thermoelectric generator with inserted fins or dimpled-surface hot heat exchanger[J]. Applied Energy, 2018, 218: 391-401. doi: 10.1016/j.apenergy.2018.02.176
    [12] ORR B, AKBARZADEH A, LAPPAS P. An exhaust heat recovery system utilising thermoelectric generators and heat pipes[J]. Applied Thermal Engineering, 2017, 126: 1185-1190. doi: 10.1016/j.applthermaleng.2016.11.019
    [13] MASSAGUER A, MASSAGUER E, COMAMALA M, et al. Transient behavior under a normalized driving cycle of an automotive thermoelectric generator[J]. Applied Energy, 2017, 206: 1282-1296. doi: 10.1016/j.apenergy.2017.10.015
    [14] KOBAYASHI M, IKOMA K, FURUYA K, et al. Thermoelectric generation and related properties of conventional type module based on Si-Ge alloy[C]//Fifteenth International Conference on Thermoelectrics. Proceedings ICT '96. Pasadena: IEEE, 1996.
    [15] BAATAR N, KIM S. A Thermoelectric generator replacing radiator for internal combustion engine vehicles[J]. TELKOMNIKA (Telecommunication Computing Electronics and Control), 2011, 9(3): 523-530. doi: 10.12928/telkomnika.v9i3.744
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  33
  • HTML全文浏览量:  12
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-23
  • 网络出版日期:  2024-03-08
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回