留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

绳结涡旋对绳索抗拉性能的影响

王哲 赵海涛 刘扬 陈吉安

王哲,赵海涛,刘扬, 等. 绳结涡旋对绳索抗拉性能的影响[J]. 机械科学与技术,2024,43(3):526-532 doi: 10.13433/j.cnki.1003-8728.20220222
引用本文: 王哲,赵海涛,刘扬, 等. 绳结涡旋对绳索抗拉性能的影响[J]. 机械科学与技术,2024,43(3):526-532 doi: 10.13433/j.cnki.1003-8728.20220222
WANG Zhe, ZHAO Haitao, LIU Yang, CHEN Ji'an. Effects of Rope's Knot Vortex on Tensile Properties[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(3): 526-532. doi: 10.13433/j.cnki.1003-8728.20220222
Citation: WANG Zhe, ZHAO Haitao, LIU Yang, CHEN Ji'an. Effects of Rope's Knot Vortex on Tensile Properties[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(3): 526-532. doi: 10.13433/j.cnki.1003-8728.20220222

绳结涡旋对绳索抗拉性能的影响

doi: 10.13433/j.cnki.1003-8728.20220222
详细信息
    作者简介:

    王哲,硕士,1109213662@qq.com

    通讯作者:

    赵海涛,副研究员,硕士生导师,博士,zht@sjtu.edu.cn

  • 中图分类号: V254.1

Effects of Rope's Knot Vortex on Tensile Properties

  • 摘要: PBO绳索具有优良的性能,被广泛应用于航空、航天等诸多领域。本文以PBO绳索的绳结为研究对象,通过打结绳索和未打结绳索拉伸实验对比,发现绳索打结极大地降低了绳索的抗拉性能。为了深入探究打结使绳索抗拉性能降低的原因,利用 UG软件建立了绳结模型,从绳结涡旋和等效长度的角度进行研究。经过对多种绳结的拉伸实验研究,提出了一种评估打结对绳索抗拉性能影响的方法,并用实验验证。结果表明:该评估方法能根据绳结等效长度和涡旋总边数的比值,实现对绳结的抗拉性能评估;为新绳结的设计及评估提供参考。
  • 图  1  绳索直径示意图

    Figure  1.  Diameter of a rope

    图  2  各绳结照片

    Figure  2.  Various rope knots

    图  3  SUNS 单轴拉伸试验机及缠绕式夹具

    Figure  3.  SUNS single-axial tensile experiment device

    图  4  高速摄像机记录的各绳结断裂结果

    Figure  4.  Rope knot breakage results recorded by high-speed video camera

    图  5  绳结拉伸实验结果

    Figure  5.  Knot tensile test results

    图  6  金钱结的拉伸实验过程

    Figure  6.  Tensile experimental process of the money knot

    图  7  各绳结模型

    Figure  7.  Models of each knot

    图  8  金钱结涡旋示意图

    Figure  8.  Schematic diagram of the money knot vortex

    图  9  绳结两端受拉力示意图

    Figure  9.  Schematic diagram of tension at both ends of knot

    图  10  各绳结涡旋示意图

    Figure  10.  Schematic diagram of each knot vortex

    图  11  两种金钱结模型

    Figure  11.  Two golden rope knot models

    表  1  各绳结的等效长度

    Table  1.   Equivolent lengths of various rope knots

    绳结名称 试件1/cm 试件2/cm 试件3/cm 平均值/cm
    金钱结 11.3 11.8 11.5 11.6
    渔夫结 9.3 8.9 8.8 9.0
    外科结 11.2 11.7 11.1 11.5
    飞艇结 8.1 8.0 8.5 8.2
    下载: 导出CSV

    表  2  绳结能承受的最大拉力实验结果

    Table  2.   Maximum tensile forces bearable by rope knots

    绳结 试件1/N 试件2/N 试件3/N 平均值/N
    金钱结 2258.691 2114.371 2341.778 2238.280
    渔夫结 2368.938 2553.820 2309.195 2410.651
    外科结 2626.439 2685.010 2562.121 2624.523
    飞艇结 2898.886 3359.665 3047.910 3102.154
    下载: 导出CSV

    表  3  绳索的拉伸实验结果

    Table  3.   Tensile forces of rope knots

    参数 最大拉力/N
    试件1 16582.616
    试件2 16014.682
    试件3 16722.191
    平均值 16439.833
    下载: 导出CSV

    表  4  各绳结涡旋评估结果

    Table  4.   Evaluating vortices of rope knots

    绳结 总涡旋数n 总边数N L/N 最大拉力平均值/N
    金钱结 1 4 2.90 2238.280
    渔夫结 2 10 0.90 2410.651
    外科结 8 16 0.72 2624.523
    飞艇结 5 14 0.59 3102.154
    下载: 导出CSV

    表  5  两种金钱结的拉伸实验结果

    Table  5.   Tensile results of two types of money knots

    参数 α-金钱结 β-金钱结
    试件1/N 2258.691 2213.083
    试件2/N 2114.371 2378.942
    试件3/N 2341.778 2462.551
    平均值/N 2238.280 2351.525
    下载: 导出CSV

    表  6  两种金钱结的评估

    Table  6.   Evaluating two golden rope knots

    参数 α-金钱结 β-金钱结
    总涡旋数n 1 2
    总边数N 4 6
    等效长度L/cm 11.6 11.6
    L/N 2.90 1.90
    最大拉力平均值/N 2238.280 2351.525
    下载: 导出CSV
  • [1] 刘姝瑞, 张明宇, 谭艳君, 等. PBO纤维性能测试研究[J]. 纺织科学与工程学报, 2020, 37(4): 34-42.

    LIU S R, ZHANG M Y, TAN Y J, et al. Research on performance test of PBO fiber[J]. Journal of Textile Science and Engineering, 2020, 37(4): 34-42. (in Chinese)
    [2] 王宁, 夏兆鹏, 王亮, 等. PBO纤维抗紫外老化改性研究进展[J]. 纺织导报, 2021(5): 54-58.

    WANG N, XIA Z P, WANG L, et al. Research progress of UV aging resistance modification of PBO fiber[J]. China Textile Leader, 2021(5): 54-58. (in Chinese)
    [3] 赵婷玉, 魏金石, 钟正祥, 等. PBO纤维增强有机硅压敏胶的制备及性能研究[J]. 化学与粘合, 2021, 43(5): 319-322. doi: 10.3969/j.issn.1001-0017.2021.05.001

    ZHAO T Y, WEI J S, ZHONG Z X, et al. Study on the preparation and performance of PBO fiber reinforced silicone pressure sensitive adhesive[J]. Chemistry and Adhesion, 2021, 43(5): 319-322. (in Chinese) doi: 10.3969/j.issn.1001-0017.2021.05.001
    [4] ZHANG K, LIU X D, ASMARE F W, et al. Probabilistic model for structural mechanics of fiber bundle and its application to PBO fiber[J]. The Journal of the Textile Institute, 2021, 112(1): 138-143. doi: 10.1080/00405000.2020.1744237
    [5] 刘亦冰, 杨建忠, 祖文菊, 等. 密封感压膜片用PBO纤维耐高温性能的研究[J]. 合成纤维, 2021, 50(11): 23-26.

    LIU Y B, YANG J Z, ZU W J, et al. Research and analysis on the high temperature resistance of PBO fiber used for sealing pressure sensitive diaphragm[J]. Synthetic Fiber in China, 2021, 50(11): 23-26. (in Chinese)
    [6] 陆瑶, 赵玉芬, 田荟霞, 等. 聚丙烯腈纳米纤维膜对聚对苯撑苯并双噁唑织物增强复合材料层间剪切性能的影响[J]. 复合材料学报, 2022, 39(12): 6130-6138.

    LU Y, ZHAO Y F, TIAN H X, et al. Effect of polyacrylonitrile nanofiber membrane on interlaminar shear properties of poly-p-phenylene benzobisoxazole fabric reinforced composites[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 6130-6138. (in Chinese)
    [7] 王虹, 李荣年, 周裴灿, 等. PBO纤维毡复合气凝胶高性能材料的制备与性能研究[J]. 高科技纤维与应用, 2021, 46(6): 26-29.

    WANG H, LI R N, ZHOU P C, et al. Study on preparation and performance of PBO fiber felt composite aerogel high performance material[J]. Hi-Tech Fiber and Application, 2021, 46(6): 26-29. (in Chinese)
    [8] 刘香园, 吴涛, 程强强. 关于绳结打法对其自动松脱和绳子强度影响的研究[J]. 黄冈师范学院学报, 2016, 36(3): 18-21.

    LIU X Y, WU T, CHENG Q Q. Impact of rope knotting on its automatic slackening and strength[J]. Journal of Huanggang Normal University, 2016, 36(3): 18-21. (in Chinese)
    [9] 吴昊, 张峰峰, 詹蔚, 等. 虚拟手术缝合线实时打结仿真研究[J]. 计算机仿真, 2021, 38(3): 331-335. doi: 10.3969/j.issn.1006-9348.2021.03.067

    WU H, ZHANG F F, ZHAN W, et al. Research on real-time knotting simulation of suture in virtual surgery[J]. Computer Simulation, 2021, 38(3): 331-335. (in Chinese) doi: 10.3969/j.issn.1006-9348.2021.03.067
    [10] QWAM ALDEN A Y, GEESLIN A G, GUSTAFSON P A. Validation of a finite element model of the mechanical performance of surgical knots of varying topology[C]//ASME 2018 International Mechanical Engineering Congress and Exposition. Pittsburgh: ASME, 2018: 9-15.
    [11] BAEK C, JOHANNS P, SANO T G, et al. Finite element modeling of tight elastic knots[J]. Journal of Applied Mechanics, 2021, 88(2): 024501. doi: 10.1115/1.4049023
    [12] 赵文锐, 贺秋森, 张婧怡, 等. 纱线打结拓扑结构的稳定性研究[J]. 棉纺织技术, 2021, 49(8): 22-25.

    ZHAO W R, HE Q S, ZHANG J Y, et al. Study on stability of yarn knotting network topology[J]. Cotton Textile Technology, 2021, 49(8): 22-25. (in Chinese)
    [13] JAWED M K, DIELEMAN P, AUDOLY B, et al. Untangling the mechanics and topology in the frictional response of long overhand elastic knots[J]. Physical Review Letters, 2015, 115(11): 118302. doi: 10.1103/PhysRevLett.115.118302
    [14] 狄剑锋. 转杯纺纱接头关键技术分析[J]. 纺织学报, 2004, 25(4): 43-44.

    DI J F. Analysis of the key technology of piecing in rotor spinning[J]. Journal of Textile Research, 2004, 25(4): 43-44. (in Chinese)
    [15] 朱阳. 基于能量分析的拎手绳打结研究[J]. 包装工程, 2020, 41(11): 233-238.

    ZHU Y. Knotting of hand rope based on energy analysis[J]. Packaging Engineering, 2020, 41(11): 233-238. (in Chinese)
  • 加载中
图(11) / 表(6)
计量
  • 文章访问数:  32
  • HTML全文浏览量:  8
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-15
  • 刊出日期:  2024-03-25

目录

    /

    返回文章
    返回