留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多孔质静压轴承静态特性预测研究

闫如忠 石俊伟 马晓建 安星宇

闫如忠,石俊伟,马晓建, 等. 多孔质静压轴承静态特性预测研究[J]. 机械科学与技术,2024,43(3):490-496 doi: 10.13433/j.cnki.1003-8728.20220214
引用本文: 闫如忠,石俊伟,马晓建, 等. 多孔质静压轴承静态特性预测研究[J]. 机械科学与技术,2024,43(3):490-496 doi: 10.13433/j.cnki.1003-8728.20220214
YAN Ruzhong, SHI Junwei, MA Xiaojian, AN Xingyu. Study on Static Characteristics Prediction of Porous Hydrostatic Bearing[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(3): 490-496. doi: 10.13433/j.cnki.1003-8728.20220214
Citation: YAN Ruzhong, SHI Junwei, MA Xiaojian, AN Xingyu. Study on Static Characteristics Prediction of Porous Hydrostatic Bearing[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(3): 490-496. doi: 10.13433/j.cnki.1003-8728.20220214

多孔质静压轴承静态特性预测研究

doi: 10.13433/j.cnki.1003-8728.20220214
详细信息
    作者简介:

    闫如忠,副教授,硕士生导师,博士,yanrz@dhu.edu.cn

  • 中图分类号: TH133.3;TP183

Study on Static Characteristics Prediction of Porous Hydrostatic Bearing

  • 摘要: 在多孔质静压轴承设计中,轴承设计参数是影响其静动态特性的关键因素之一,通常情况下,要得到合适的轴承设计参数,需要多次重复建模和仿真,且由于轴承结构复杂,建模难度大,仿真时间长,严重影响了轴承的设计效率。本文构建了一种基于遗传算法(Genetic algorithm,GA)优化反向传播(Back propagation, BP)神经网络的轴承静态特性预测模型,采用拉丁超立方抽样方法在轴承参数设计空间内采样,并进行Fluent流体仿真,将仿真数据用于GA-BP神经网络模型的训练与测试,实现了对设计空间内任意设计参数下的多孔质静压轴承静态特性的预测。研究结果表明,训练出的GA-BP神经网络模型能够准确预测多孔质静压轴承的静态特性,预测精度在95%以上,对多孔质静压轴承的快速设计和参数优化具有重要意义。
  • 图  1  静压止推轴承多孔质结构

    Figure  1.  Porous structure of hydrostatic thrust bearing

    图  2  多孔质轴承承载原理

    Figure  2.  Load-bearing principle of porous bearing

    图  3  BP神经元模型

    Figure  3.  Model of BP neuron

    图  4  GA-BP神经网络训练流程

    Figure  4.  Training processes of GA-BP neural network

    图  5  拉丁超立方抽样样本点分布

    Figure  5.  Sample point distribution of Latin hypercube sampling

    图  6  BP神经网络结构

    Figure  6.  Structure of BP neural network

    图  7  GA-BP神经网络模型训练结果

    Figure  7.  Training results of GA-BP neural network model

    图  8  静态承载力预测结果与预测误差百分比

    Figure  8.  Prediction results and prediction error percentage of static bearing capacity

    图  9  静刚度预测结果与预测误差百分比

    Figure  9.  Prediction results and prediction error percentage of static stiffness

    图  10  耗气量预测结果与预测误差百分比

    Figure  10.  Prediction results and prediction error percentage of gas consumption

    表  1  多孔质静压止推轴承设计参数

    Table  1.   Design parameters of porous hydrostatic thrust bearing

    参数名称最小值最大值
    多孔质长度L/mm20.080.0
    多孔质宽度W/mm10.050.0
    多孔质厚度H/mm3.015.0
    气膜厚度h/μm520
    供气压力Ps/bar5.08.0
    多孔质渗透率α/m21.0×10−131.0×10−13
    下载: 导出CSV

    表  2  部分样本数据

    Table  2.   Partial sample data

    样本编号 多孔质长度L/mm 多孔质宽度W/mm 多孔质厚度H/mm 气膜厚度h/μm 供气压力Ps/bar 渗透率α/10−13 m2 静态承载力Wb/N 耗气量Q/(L·min−1 静刚度K/(N·μm−1
    1 23.2 43.3 11.1 18 5.9 1.0 122.5 13.3 11.5
    2 39.0 19.5 14.7 14 7.0 1.0 105.8 9.1 12.0
    3 51.4 23.3 4.7 15 6.4 1.0 398.7 24.6 22.5
    4 43.2 35.3 8.4 20 6.3 1.0 310.3 24.4 20.6
    5 31.0 38.3 12.4 10 6.1 1.0 324.4 10.0 28.2
    6 68.8 31.9 3.3 16 7.7 1.0 1174.8 49.1 36.5
    $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $
    200 78.4 16.7 3.4 7 5.5 1.0 569.7 13.9 27.1
    下载: 导出CSV

    表  3  BP神经网络参数设置

    Table  3.   BP neural network parameters settings

    参数 取值/方法
    输入层神经元数 5
    隐含层神经元数 11
    输出层神经元数 3
    激活函数 Tansig、Purelin
    训练函数 Trainlm
    最大训练次数 150
    学习速率 0.01
    训练精度 1.0 × 10−4
    下载: 导出CSV

    表  4  GA-BP神经网络模型预测精度

    Table  4.   Prediction accuracy of GA-BP neural network model

    静态特性 EMR/% R2 预测精度/%
    静态承载力 3.32 0.991 96.68
    静刚度 2.99 0.996 97.01
    耗气量 4.65 0.988 95.35
    下载: 导出CSV
  • [1] 伍奕桦. 多孔质可倾瓦轴承支承转子系统动力学分析及其实验研究[D]. 长沙: 湖南大学, 2019.

    WU Y H. Theoretical analysis and experimental investigation on rotordynamic performance of a rigid rotor supported on porous tiliting pad bearings[D]. Changsha: Hunan University, 2019. (in Chinese)
    [2] 段柳颖, 张晓峰, 刘玚, 等. 多孔质气体静压径向轴承倾斜状态特性研究[J]. 润滑与密封, 2021, 46(6): 10-14.

    DUAN L Y, ZHANG X F, LIU Y, et al. Inclination performance study of porous aerostatic journal bearing[J]. Lubrication Engineering, 2021, 46(6): 10-14. (in Chinese)
    [3] QIN P, SHEN Y, ZHU J, et al. Dynamic analysis of hydrodynamic bearing–rotor system based on neural network[J]. International Journal of Engineering Science, 2005, 43(5-6): 520-531. doi: 10.1016/j.ijengsci.2003.10.008
    [4] ZHU X X, LUO X Z, ZHAO J H, et al. Research on deep feature learning and condition recognition method for bearing vibration[J]. Applied Acoustics, 2020, 168: 107435. doi: 10.1016/j.apacoust.2020.107435
    [5] TANG J, HUANG X D, FANG C G. BP neural network in prediction of the constant-current hydrostatic bearing static stiffness[J]. Advanced Materials Research, 2011, 199-200: 271-274. doi: 10.4028/www.scientific.net/AMR.199-200.271
    [6] 李寅平, 陈国定, 李盼, 等. 基于GA-LM-BP算法的圆柱轴承动特性预测[J]. 机械制造, 2013, 51(1): 24-27. doi: 10.3969/j.issn.1000-4998.2013.01.009

    LI Y P, CHEN G D, LI P, et al. Prediction of dynamic characteristics of cylindrical bearing based on GA-LM-BP algorithm[J]. Machinery, 2013, 51(1): 24-27. (in Chinese) doi: 10.3969/j.issn.1000-4998.2013.01.009
    [7] 石莹, 王学智, 刘金营, 等. 基于Fluent-BP神经网络的液体动静压轴承热特性分析[J]. 润滑与密封, 2016, 41(1): 37-42. doi: 10.3969/j.issn.0254-0150.2016.01.007

    SHI Y, WANG X Z, LIU J Y, et al. Thermal characteristics analysis of liquid hybrid bearing based on Fluent-BP neural networks[J]. Lubrication Engineering, 2016, 41(1): 37-42. (in Chinese) doi: 10.3969/j.issn.0254-0150.2016.01.007
    [8] 林桂强, 毕超, 江波, 等. 基于BP神经网络的套筒式串联推力轴承组均载性能及承载能力细化研究[J]. 工程塑料应用, 2012, 40(7): 50-53. doi: 10.3969/j.issn.1001-3539.2012.07.012

    LIN G Q, BI C, JIANG B, et al. Detailed research on load uniformity and load-bearing capacity of sleeve type tandem thrust bearings based on BP neural network[J]. Engineering Plastics Application, 2012, 40(7): 50-53. (in Chinese) doi: 10.3969/j.issn.1001-3539.2012.07.012
    [9] 顾延东. 多孔质气体径向轴承静动特性研究及优化设计方法[D]. 镇江: 江苏大学, 2019.

    GU Y D. Investigation on the static and dynamic characteristics and optimization design of aerostatic radial bearing with porous restrictor[D]. Zhenjiang: Jiangsu University, 2019. (in Chinese)
    [10] 顾延东, MARTIN B, ARTUR S, 等. 多孔质气体静压轴承研究现状及发展趋势[J]. 排灌机械工程学报, 2021, 39(8): 818-825.

    GU Y D, MARTIN B, ARTUR S, et al. Aerostatic bearing with porous restrictor: research status and future perspectives[J]. Journal of Drainage and Irrigation Machinery Engineering, 2021, 39(8): 818-825. (in Chinese)
    [11] 雷明远. 基于遗传算法与BP神经网络的RV减速器结构优化设计[D]. 兰州: 兰州理工大学, 2021.

    LEI M Y. Structure optimization design of RV reducer based on genetic algorithm and BP neural network[D]. Lanzhou: Lanzhou University of Technology, 2021. (in Chinese)
    [12] 马高, 刘康. 基于BP神经网络CFRP约束混凝土抗压强度预测[J]. 湖南大学学报(自然科学版), 2021, 48(9): 88-97. doi: 10.16339/j.cnki.hdxbzkb.2021.09.010

    MA G, LIU K. Prediction of compressive strength of CFRP-confined concrete columns based on BP neural network[J]. Journal of Hunan University (Natural Sciences), 2021, 48(9): 88-97. (in Chinese) doi: 10.16339/j.cnki.hdxbzkb.2021.09.010
    [13] 胡新荣, 刘嘉文, 刘军平, 等. 基于改进GA-BP-MC神经网络的人体三维尺寸预测[J]. 计算机工程与科学, 2021, 43(8): 1443-1453. doi: 10.3969/j.issn.1007-130X.2021.08.013

    HU X R, LIU J W, LIU J P, et al. 3D human dimension prediction based on improved GA-BP-MC neural network[J]. Computer Engineering and Science, 2021, 43(8): 1443-1453. (in Chinese) doi: 10.3969/j.issn.1007-130X.2021.08.013
    [14] 李静, 姜峰, 牛彩云. 实验设计和神经网络法对柴油机性能的优化研究[J]. 机械设计与制造, 2020(6): 100-104. doi: 10.3969/j.issn.1001-3997.2020.06.025

    LI J, JIANG F, NIU C Y. Research on performance optimization of diesel engine based on DOE and ANN method[J]. Machinery Design & Manufacture, 2020(6): 100-104. (in Chinese) doi: 10.3969/j.issn.1001-3997.2020.06.025
    [15] CHEN H, WANG Y, ZUO M S, et al. A new prediction model of CO2 diffusion coefficient in crude oil under reservoir conditions based on BP neural network[J]. Energy, 2022, 239: 122286. doi: 10.1016/j.energy.2021.122286
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  22
  • HTML全文浏览量:  6
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-09
  • 刊出日期:  2024-03-25

目录

    /

    返回文章
    返回