留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

采用轮轨振动加速度信号对车轮扁疤的识别研究

杨丽蓉 和振兴 王开云 刘旭麒 曹子勇

杨丽蓉,和振兴,王开云, 等. 采用轮轨振动加速度信号对车轮扁疤的识别研究[J]. 机械科学与技术,2024,43(2):344-350 doi: 10.13433/j.cnki.1003-8728.20220206
引用本文: 杨丽蓉,和振兴,王开云, 等. 采用轮轨振动加速度信号对车轮扁疤的识别研究[J]. 机械科学与技术,2024,43(2):344-350 doi: 10.13433/j.cnki.1003-8728.20220206
YANG Lirong, HE Zhenxing, WANG Kaiyun, LIU Xuqi, CAO Ziyong. Study on Recognition of Wheel Flat Scars Using Acceleration Signal of Wheel-rail Vibration[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(2): 344-350. doi: 10.13433/j.cnki.1003-8728.20220206
Citation: YANG Lirong, HE Zhenxing, WANG Kaiyun, LIU Xuqi, CAO Ziyong. Study on Recognition of Wheel Flat Scars Using Acceleration Signal of Wheel-rail Vibration[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(2): 344-350. doi: 10.13433/j.cnki.1003-8728.20220206

采用轮轨振动加速度信号对车轮扁疤的识别研究

doi: 10.13433/j.cnki.1003-8728.20220206
基金项目: 国家自然科学基金项目(52162047)、牵引动力国家重点实验室开放课题(TPL1902)及甘肃省科技计划项目(20JR5RA393)
详细信息
    作者简介:

    杨丽蓉,硕士研究生,2507576588@qq.com

    通讯作者:

    和振兴,博士,副教授,zhenxinghe@163.com

  • 中图分类号: TG156

Study on Recognition of Wheel Flat Scars Using Acceleration Signal of Wheel-rail Vibration

  • 摘要: 实现车轮扁疤损伤的早期识别,并跟踪其发展过程,是研发轨道交通故障智能识别系统的重要内容。目前相关研究着重于分析车轮扁疤激励对车辆和轨道系统相关部件的影响,以及如何在确保行车安全的条件下确定扁疤的安全限值,缺乏通过钢轨振动响应识别车轮扁疤机理的研究。因此基于车辆-轨道耦合动力学理论,通过动力学仿真计算得到车轮扁疤激励下,车辆系统和轨道系统的动力学响应。采用小波包分解算法,提取不同部件的垂向振动加速度的能量值作为评判指标,从能量特征的角度研究车轮扁疤冲击响应的评价方法。考虑了轮轨之间平顺、随机不平顺、以及叠加粗糙度3种激励状态,对车体、构架、轴箱、轮对以及钢轨的加速度时域信号特征和能量特征进行了对比分析。研究发现钢轨小波包能量值与扁疤深度之间具有线性递增关系,车轮扁疤冲击仅影响同侧钢轨的小波包能量值,因此可以利用钢轨振动响应的小波包能量值进行车轮扁疤检测。
  • 图  1  车辆-轨道耦合动力学模型

    Figure  1.  Vehicle-track coupling dynamics model

    图  2  高速时扁疤车轮运动示意图

    Figure  2.  Motion of flat wheel at high speed

    图  3  小波包3层分解示意图

    Figure  3.  Three-layer wavelet packet decomposition

    图  4  无扁疤状态对应的垂向振动加速度图

    Figure  4.  The vertical vibration accelerationcorresponding to the no-scar state

    图  5  有扁疤状态对应的垂向振动加速度图

    Figure  5.  The vertical vibration accelerationcorresponding to the flat scar state

    图  6  垂向振动响应均值图

    Figure  6.  Mean values of vertical vibration response

    图  7  垂向振动响应最大值图

    Figure  7.  The maximum vertical vibration response

    图  8  垂向振动响应能量图

    Figure  8.  Vertical vibration response energy

    图  9  右轨垂向振动响应能量值图

    Figure  9.  The vertical vibration response energy values of the right rail

    图  10  车轮扁疤与传感器测点位置示意图

    Figure  10.  The schematic diagram of the position of the wheel's flat scar and the sensor measuring point

    图  11  钢轨平顺状态下各测点能量分布图

    Figure  11.  Energy distribution of each measuring point under smooth rail condition

    图  12  钢轨不平顺状态下各测点能量分布图

    Figure  12.  Energy distribution of each measuring point under rail irregularity

    图  13  钢轨不平顺叠加粗糙度状态下各测点能量分布图

    Figure  13.  Energy distribution of each measuring point under the condition of rail irregularity superposition roughness

  • [1] 翟婉明. 车辆-轨道耦合动力学[M]. 4版. 北京: 科学出版社, 2015.

    ZHAI W M. Vehicle-track coupling dynamics[M]. 4th ed. Beijing: Science Press, 2015. (in Chinese)
    [2] 翟婉明. 铁路车轮扁疤的动力学效应[J]. 铁道车辆, 1994(7): 1-5.

    ZHAI W M. The dynamic effect of railway wheel flat scars[J]. Railroad Cars, 1994(7): 1-5. (in Chinese)
    [3] 尹镪, 蔡成标, 朱胜阳. 基于声传递向量方法的车轮扁疤冲击噪声分析[J]. 噪声与振动控制, 2017, 37(4): 110-114. doi: 10.3969/j.issn.1006-1355.2017.04.022

    YIN Q, CAI C B, ZHU S Y. Analysis of wheel flat induced impact noise based on acoustic transfer vectors[J]. Noise and Vibration Control, 2017, 37(4): 110-114. (in Chinese) doi: 10.3969/j.issn.1006-1355.2017.04.022
    [4] 杨逸凡, 凌亮, 杨云帆, 等. 重载机车车轮擦伤下的轮轨动态响应[J]. 工程力学, 2020, 37(12): 213-219. doi: 10.6052/j.issn.1000-4750.2020.01.0033

    YANG Y F, LING L, YANG Y F, et al. Wheel/rail dynamic responses due to the wheel flat of heavy-haul locomotives[J]. Engineering Mechanics, 2020, 37(12): 213-219. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.01.0033
    [5] 杨光, 任尊松, 袁雨青. 车轮扁疤伤损对高速列车轮对动力学性能影响[J]. 北京交通大学学报, 2018, 42(3): 103-111.

    YANG G, REN Z S, YUAN Y Q. Influence of wheel flat on dynamic performance of high-speed train wheelset[J]. Journal of Beijing Jiaotong University, 2018, 42(3): 103-111. (in Chinese)
    [6] REN Z S. An investigation on wheel/rail impact dynamics with a three-dimensional flat model[J]. Vehicle System Dynamics, 2019, 57(5): 369-388.
    [7] CHEN S Q, WANG K Y, CHANG C, et al. A two-level adaptive chirp mode decomposition method for the railway wheel flat detection under variable-speed conditions[J]. Journal of Sound and Vibration, 2021, 498: 115963. doi: 10.1016/j.jsv.2021.115963
    [8] SHIM J, KIM G, CHO B, et al. Application of vibration signal processing methods to detect and diagnose wheel flats in railway vehicles[J]. Applied Sciences, 2021, 11(5): 2151. doi: 10.3390/app11052151
    [9] ZHOU Z W, CHEN Z G, SPIRYAGIN M, et al. Dynamic response feature of electromechanical coupled drive subsystem in a locomotive excited by wheel flat[J]. Engineering Failure Analysis, 2021, 122: 105248. doi: 10.1016/j.engfailanal.2021.105248
    [10] SHI D C, YE Y G, GILLWALD M, et al. Designing a lightweight 1D convolutional neural network with Bayesian optimization for wheel flat detection using carbody accelerations[J]. International Journal of Rail Transportation, 2021, 9(4): 311-341. doi: 10.1080/23248378.2020.1795942
    [11] BERNAL E, SPIRYAGIN M, COLE C. Wheel flat detectability for Y25 railway freight wagon using vehicle component acceleration signals[J]. Vehicle System Dynamics, 2020, 58(12): 1893-1913. doi: 10.1080/00423114.2019.1657155
    [12] 宋小林, 翟婉明, 王开云. 波磨对轮轨系统动力特性的影响分析[J]. 中国铁道科学, 2018, 39(5): 42-50. doi: 10.3969/j.issn.1001-4632.2018.05.06

    SONG X L, ZHAI W M, WANG K Y. Effect of rail corrugation on dynamic properties of wheel-rail system[J]. China Railway Science, 2018, 39(5): 42-50. (in Chinese) doi: 10.3969/j.issn.1001-4632.2018.05.06
    [13] 和振兴. 减振轨道结构差异不平顺理论评价方法研究[J]. 铁道工程学报, 2017, 34(2): 53-58. doi: 10.3969/j.issn.1006-2106.2017.02.011

    HE Z X. Research on the evaluation method of structural difference irregularity of vibration damping track[J]. Journal of Railway Engineering Society, 2017, 34(2): 53-58. (in Chinese) doi: 10.3969/j.issn.1006-2106.2017.02.011
    [14] 查浩, 任尊松, 徐宁. 车轮扁疤激起的轴箱轴承冲击特性[J]. 交通运输工程学报, 2020, 20(4): 165-173. doi: 10.19818/j.cnki.1671-1637.2020.04.013

    CHA H, REN Z S, XU N. Impact characteristics of axle box bearing due to wheel flat scars[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 165-173. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.04.013
    [15] GOSWAMI J C, CHAN A K. 小波分析理论、算法及其应用[M]. 许天周, 黄春光, 译. 北京: 国防工业出版社, 2007.

    GOSWAMI J C, CHAN A K. Wavelet analysis theory, algorithm and application[M]. XU T Z, HUANG C G, trans. Beijing: National Defense Industry Press, 2007. (in Chinese)
    [16] 刘国云, 曾京, 邬平波, 等. 车轮扁疤所引起的车辆系统振动特性分析[J]. 机械工程学报, 2020, 56(8): 182-189. doi: 10.3901/JME.2020.08.182

    LIU G Y, ZENG J, WU P B, et al. Vibration characteristic analysis of vehicle systems due to wheel flat[J]. Journal of Mechanical Engineering, 2020, 56(8): 182-189. (in Chinese) doi: 10.3901/JME.2020.08.182
  • 加载中
图(13)
计量
  • 文章访问数:  40
  • HTML全文浏览量:  20
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-30
  • 网络出版日期:  2024-03-08
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回