留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

摇动半径与中心抬刀对电火花加工效果影响的试验研究

李殿新 刘建勇 张慧杰 杨晓宇

李殿新,刘建勇,张慧杰, 等. 摇动半径与中心抬刀对电火花加工效果影响的试验研究[J]. 机械科学与技术,2024,43(2):232-237 doi: 10.13433/j.cnki.1003-8728.20220200
引用本文: 李殿新,刘建勇,张慧杰, 等. 摇动半径与中心抬刀对电火花加工效果影响的试验研究[J]. 机械科学与技术,2024,43(2):232-237 doi: 10.13433/j.cnki.1003-8728.20220200
LI Dianxin, LIU Jianyong, ZHANG Huijie, YANG Xiaoyu. Experimental Study on Influence of Sway Radius and Cutting-tool Center Lifting on EDM Effect[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(2): 232-237. doi: 10.13433/j.cnki.1003-8728.20220200
Citation: LI Dianxin, LIU Jianyong, ZHANG Huijie, YANG Xiaoyu. Experimental Study on Influence of Sway Radius and Cutting-tool Center Lifting on EDM Effect[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(2): 232-237. doi: 10.13433/j.cnki.1003-8728.20220200

摇动半径与中心抬刀对电火花加工效果影响的试验研究

doi: 10.13433/j.cnki.1003-8728.20220200
基金项目: 北京市科技新星计划(20230484429)与北京石油化工学院致远科研基金项目(2023003)
详细信息
    作者简介:

    李殿新,副教授,博士,lidianxin@bipt.edu.cn

    通讯作者:

    刘建勇,教授,硕士生导师,博士,ljy_18778@163.com

  • 中图分类号: V261.6 + 1

Experimental Study on Influence of Sway Radius and Cutting-tool Center Lifting on EDM Effect

  • 摘要: 为了提升电火花加工系统的性能,开发出基于PC平台、能够实现高速复杂抬刀、多轴联动摇动加工的电火花成形加工数控系统。在中心抬刀模式下,加入摇动半径分别为30 μm、60 μm、90 μm的摇动模式,对比了不同模式下的试验结果。在90 μm摇动模式下,对比了中心抬刀与非中心抬刀下的试验结果。结果表明:随着摇动半径的增大,加工时间变长、加工蚀除率下降、加工后孔的直径和深度变大但孔的直径偏差变小、底部圆角半径变小、电极损耗率下降,但表面粗糙度基本相同;中心抬刀会延长加工时间、降低加工蚀除率、减小孔直径并降低孔的直径误差、减小电极损耗率,对底部圆角直径、加工深度、表面粗糙度的影响不大。
  • 图  1  电火花数控加工系统

    Figure  1.  EDM CNC machining system

    图  2  电极及工件效果

    Figure  2.  Effects of electrode and workpiece

    图  3  加工效率对比

    Figure  3.  Comparison of machining efficiency

    图  4  加工蚀除率对比

    Figure  4.  Comparison of processing and etching rates

    图  5  孔直径对比

    Figure  5.  Comparison of hole diameters

    图  6  底部圆角半径尺寸

    Figure  6.  Radius size of bottom fillet

    图  7  加工效率对比

    Figure  7.  Comparison of machining efficiency

    图  8  加工蚀除率对比

    Figure  8.  Comparison of processing and etching rates

    图  9  孔直径对比

    Figure  9.  Comparison of hole diameters

    图  10  底部圆角半径尺寸

    Figure  10.  Radius size of bottom fillet

    表  1  直径偏差统计

    Table  1.   Statistics of diameter deviation

    加工模式直径偏差/mm
    无摇动0.079
    30 μm摇动0.080
    60 μm摇动0.062
    90 μm摇动0.055
    下载: 导出CSV

    表  2  加工深度对比

    Table  2.   Comparison of processing depth

    加工模式加工深度/mm
    无摇动19.952
    30 μm摇动19.989
    60 μm摇动20.028
    90 μm摇动20.021
    下载: 导出CSV

    表  3  表面粗糙度对比

    Table  3.   Comparison of surface roughness

    加工模式表面粗糙度/μm
    无摇动3.063
    30 μm摇动3.047
    60 μm摇动2.965
    90 μm摇动3.014
    下载: 导出CSV

    表  4  电极损耗对比

    Table  4.   Comparison of electrode loss

    参数 无摇动 30 μm
    摇动
    60 μm
    摇动
    90 μm
    摇动
    电极加工前质量/g 35.346 33.726 32.832 34.552
    电极加工后质量/g 35.262 33.647 32.754 34.481
    电极损耗质量/g 0.084 0.079 0.078 0.071
    工件去除质量/g 12.77 12.919 13.084 13.216
    电极损耗率/% 0.658 0.611 0.596 0.537
    下载: 导出CSV

    表  5  电极损耗结果

    Table  5.   Electrode loss results

    参数 中心抬刀 非中心抬刀
    电极加工前质量/g 34.552 33.766
    电极加工后质量/g 34.481 33.684
    电极损耗质量/g 0.071 0.082
    工件蚀除质量/g 13.216 12.923
    电极损耗率/% 0.537 0.634
    下载: 导出CSV
  • [1] 栾晓声, 孟建兵, 胡益忠, 等. SiC磨粒辅助钛合金EDM和ECM并行加工的工艺参数优化[J]. 机械科学与技术, 2021, 40(10): 1549-1554. doi: 10.13433/j.cnki.1003-8728.20200243

    LUAN X S, MENG J B, HU Y Z, et al. Parameters optimization of SiC abrasive assisted simultaneous EDM and ECM machining of Titanium alloy[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(10): 1549-1554. (in Chinese) doi: 10.13433/j.cnki.1003-8728.20200243
    [2] WANG X Z, LI C J, GUO H, et al. Alternating energy electrical discharge machining of Titanium alloy using a WC-PCD electrode[J]. Journal of Manufacturing Processes, 2020, 60: 37-47. doi: 10.1016/j.jmapro.2020.10.034
    [3] EGASHIRA K, MATSUGASAKO A, TSUCHIYA H, et al. Electrical discharge machining with ultralow discharge energy[J]. Precision Engineering, 2006, 30(4): 414-420. doi: 10.1016/j.precisioneng.2006.01.004
    [4] 候少杰, 白基成, 刘晓萌, 等. 电火花加工放电状态特性试验研究[J]. 航空制造技术, 2021, 64(10): 80-85. doi: 10.16080/j.issn1671-833x.2021.10.080

    HOU S J, BAI J C, LIU X M, et al. Experimental investigation on discharge states characteristics of EDM[J]. Aeronautical Manufacturing Technology, 2021, 64(10): 80-85. (in Chinese) doi: 10.16080/j.issn1671-833x.2021.10.080
    [5] LIU J L, DENG F M, LU X J, et al. A study on structural evolution of metamorphic layer on the surface of PCD in electrical discharge machining[J]. Diamond and Related Materials, 2019, 91: 46-53. doi: 10.1016/j.diamond.2018.11.006
    [6] 杨盼盼, 王燕青, 马虎亮, 等. 慢走丝电火花线切割加工钨钢刀具实验研究[J]. 机械科学与技术, 2021, 40(8): 1240-1246. doi: 10.13433/j.cnki.1003-8728.20200202

    YANG P P, WANG Y Q, MA H L, et al. Experimental study on cutting tool of Tungsten steel in wire EDM[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(8): 1240-1246. (in Chinese) doi: 10.13433/j.cnki.1003-8728.20200202
    [7] YUE X M, YANG X D, TIAN J, et al. Thermal, mechanical and chemical material removal mechanism of carbon fiber reinforced polymers in electrical discharge machining[J]. International Journal of Machine Tools and Manufacture, 2018, 133: 4-17. doi: 10.1016/j.ijmachtools.2018.05.004
    [8] 徐庆泽, 蔡晋, 孟庆勋, 等. 喷丸强化对电火花加工表面影响的研究进展[J]. 航空精密制造技术, 2020, 56(5): 1-5. doi: 10.3969/j.issn.1003-5451.2020.05.001

    XU Q Z, CAI J, MENG Q X, et al. Research progress of effect of shot peening on surface by EDM[J]. Aviation Precision Manufacturing Technology, 2020, 56(5): 1-5. (in Chinese) doi: 10.3969/j.issn.1003-5451.2020.05.001
    [9] WERNER A. Method for enhanced accuracy in machining curvilinear profiles on wire-cut electrical discharge machines[J]. Precision Engineering, 2016, 44: 75-80. doi: 10.1016/j.precisioneng.2015.10.004
    [10] 苏国康, 李海成, 林莉, 等. 多工位同步加工电火花线切割机床研制[J]. 航空制造技术, 2020, 63(17): 98-101. doi: 10.16080/j.issn1671-833x.2020.17.098

    SU G K, LI H C, LIN L, et al. Development of multi-station synchronous wire cut electrical discharge machining (WEDM) machine[J]. Aeronautical Manufacturing Technology, 2020, 63(17): 98-101. (in Chinese) doi: 10.16080/j.issn1671-833x.2020.17.098
    [11] SHI W T, LIU Z D, QIU M B, et al. Simulation and experimental study of wire tension in high-speed wire electrical discharge machining[J]. Journal of Materials Processing Technology, 2016, 229: 722-728. doi: 10.1016/j.jmatprotec.2015.11.001
    [12] FLAÑO O, AYESTA I, IZQUIERDO B, et al. Improvement of EDM performance in high-aspect ratio slot machining using multi-holed electrodes[J]. Precision Engineering, 2018, 51: 223-231. doi: 10.1016/j.precisioneng.2017.08.014
    [13] 李淋, 张健, 吴江, 等. 电火花深小孔加工抬刀过程中超疏水表面电极对工作液置换的影响[J]. 电加工与模具, 2020(6): 11-15. doi: 10.3969/j.issn.1009-279X.2020.06.002

    LI L, ZHANG J, WU J, et al. The effect of the electrode with superhydrophobic surface on the working fluid displacement during the electrode lifting process of EDM deep micro-hole machining[J]. Electromachining & Mould, 2020(6): 11-15. (in Chinese) doi: 10.3969/j.issn.1009-279X.2020.06.002
    [14] CHU X Y, ZHUANG W H, XUE W D, et al. Electrolytic removal of recast layers on micro-EDM microstructure surfaces[J]. The International Journal of Advanced Manufacturing Technology, 2020, 108(3): 867-879. doi: 10.1007/s00170-020-05410-x
    [15] 刘洋, 杜云龙, 郭永丰, 等. 电火花摇动加工高弹性合金双孔挠性薄壁的变形仿真分析[J]. 电加工与模具, 2021(6): 11-18. doi: 10.3969/j.issn.1009-279X.2021.06.002

    LIU Y, DU Y L, GUO Y F, et al. Simulation analysis of deformation in double-hole flexible thin-wall with EDM orbital machining[J]. Electromachining & Mould, 2021(6): 11-18. (in Chinese) doi: 10.3969/j.issn.1009-279X.2021.06.002
    [16] YU Z Y, ZHANG Y, LI J, et al. High aspect ratio micro-hole drilling aided with ultrasonic vibration and planetary movement of electrode by micro-EDM[J]. CIRP Annals, 2009, 58(1): 213-216. doi: 10.1016/j.cirp.2009.03.111
    [17] SHEN Y, LIU Y H, DONG H, et al. Surface integrity of Inconel 718 in high-speed electrical discharge machining milling using air dielectric[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(1-4): 691-698. doi: 10.1007/s00170-016-9332-7
    [18] ASSARZADEH S, GHOREISHI M. Prediction of root mean square surface roughness in low discharge energy die-sinking EDM process considering the effects of successive discharges and plasma flushing efficiency[J]. Journal of Manufacturing Processes, 2017, 30: 502-515. doi: 10.1016/j.jmapro.2017.10.012
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  37
  • HTML全文浏览量:  16
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-08
  • 网络出版日期:  2024-03-08
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回