留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑小波包-灰度共生矩阵的高压断路器弹簧疲劳故障程度诊断研究

张艳飞 邵阳 公维炜 张昭维 武建文

张艳飞,邵阳,公维炜, 等. 考虑小波包-灰度共生矩阵的高压断路器弹簧疲劳故障程度诊断研究[J]. 机械科学与技术,2024,43(2):274-281 doi: 10.13433/j.cnki.1003-8728.20220199
引用本文: 张艳飞,邵阳,公维炜, 等. 考虑小波包-灰度共生矩阵的高压断路器弹簧疲劳故障程度诊断研究[J]. 机械科学与技术,2024,43(2):274-281 doi: 10.13433/j.cnki.1003-8728.20220199
ZHANG Yanfei, SHAO Yang, GONG Weiwei, ZHANG Zhaowei, WU Jianwen. Depth Diagnosis of Spring Mechanical Faults of High Voltage Circuit Breakers Considering Wavelet Packet-Gray Level Co-occurrence Matrix Method[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(2): 274-281. doi: 10.13433/j.cnki.1003-8728.20220199
Citation: ZHANG Yanfei, SHAO Yang, GONG Weiwei, ZHANG Zhaowei, WU Jianwen. Depth Diagnosis of Spring Mechanical Faults of High Voltage Circuit Breakers Considering Wavelet Packet-Gray Level Co-occurrence Matrix Method[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(2): 274-281. doi: 10.13433/j.cnki.1003-8728.20220199

考虑小波包-灰度共生矩阵的高压断路器弹簧疲劳故障程度诊断研究

doi: 10.13433/j.cnki.1003-8728.20220199
基金项目: 内蒙古电力集团(有限)责任公司科技项目资助(内电科技〔2021〕3号)
详细信息
    作者简介:

    张艳飞,高级工程师,硕士研究生,ketifeifei@163.com

    通讯作者:

    邵阳,博士研究生,shaoyangneu@163.com

  • 中图分类号: TM561

Depth Diagnosis of Spring Mechanical Faults of High Voltage Circuit Breakers Considering Wavelet Packet-Gray Level Co-occurrence Matrix Method

  • 摘要: 弹簧操动机构作为高压断路器(High voltage circuit breakers, HVCBs)分合闸操作的储能单元,其可靠性对电力系统的安全运行具有重要意义。本文以六氟化硫高压断路器的弹簧操动机构为研究对象,分析分合闸弹簧的动作机理,对弹簧进行不同程度的故障设置。介绍了振动、声音传感器设备及采集参数,针对小波包时频分析法的缺点,提出一种基于小波包-灰度共生矩阵(Gray level co-occurrence matrix, GLCM)的特征提取方法。从诊断速度和诊断准确度两方面对比了支持向量机(Support vector machine, SVM)、决策树(Decision tree, DT)、朴素贝叶斯、K近邻(K nearest neighbors, KNN)4种诊断模型。实验结果表明,在模拟实际应用场景中,选用K近邻算法对分合闸弹簧故障进行深度诊断能够准确判断故障类型及故障程度,对高压断路器安全可靠运行具有实际应用价值。
  • 图  1  操动机构结构示意图

    Figure  1.  Schematic diagram of the operating mechanism structure

    图  2  操动机构实物图

    Figure  2.  The operating mechanism

    图  3  分合闸弹簧实物图

    Figure  3.  The opening and closing springs

    图  4  分合闸弹簧结构图

    Figure  4.  Structure of the opening and closing spring

    图  5  分合闸弹簧疲劳故障模拟

    Figure  5.  Simulation of opening and closing spring fatigue failure

    图  6  分闸弹簧疲劳5 mm故障合闸振动时频图

    Figure  6.  Time frequency of closing vibration for 5 mm fatigue failure of opening spring

    图  7  灰度共生矩阵原理示意图

    Figure  7.  Schematic diagram of the principle of gray level co-occurrence matrix

    图  8  诊断模型选择过程流程图

    Figure  8.  Flow chart of diagnostic model selection process

    图  9  4种诊断模型结果对比

    Figure  9.  Comparison of results of four diagnostic models

    图  10  未知工况故障类型及程度诊断流程图

    Figure  10.  Flowchart of unknown working condition fault type and degree diagnosis

    表  1  弹簧疲劳故障模拟

    Table  1.   Simulation of spring fatigue failure

    故障
    名称
    原始
    压缩量/mm
    故障
    压缩量/mm
    故障程度
    合闸弹簧
    疲劳故障
    57 47 1级合闸弹簧疲劳
    57 37 2级合闸弹簧疲劳
    57 27 3级合闸弹簧疲劳
    分闸弹簧
    疲劳故障
    53 48 1级分闸弹簧疲劳
    53 43 2级分闸弹簧疲劳
    53 38 3级分闸弹簧疲劳
    下载: 导出CSV

    表  2  振动传感器技术参数

    Table  2.   Technical parameters of vibration sensors

    参数 数值
    电荷灵敏度 0.351 pC/ms2
    最大冲击加速度 100 000 m/s2
    频率响应 12 kHz
    谐振频率 45 kHz
    下载: 导出CSV

    表  3  声音传感器技术参数

    Table  3.   Technical parameters of sound sensor

    参数数值
    标称灵敏度50 mV/Pa
    频率范围10~20 000 Hz
    动态响应17~140 dB
    声级计频率特性1级自由场
    下载: 导出CSV

    表  4  4种诊断模型用时及诊断准确度对比

    Table  4.   Comparison of time consumption and diagnostic accuracy among four diagnostic models

    模型名称 训练时长/s 诊断时长/s 综合时长/s 诊断准确度/%
    SVM 3.14 2.66 5.80 96.6
    DT 2.88 0.22 3.12 85.0
    KNN 1.44 0.62 2.06 98.3
    Bayes 6.82 1.46 8.28 93.3
    下载: 导出CSV

    表  5  分合闸弹簧疲劳故障种类及故障程度的准确率

    Table  5.   Accuracy of types and degrees of fatigue faults in opening and closing springs

    故障类型名称 故障程度名称 故障程度准确率/%
    合闸弹簧疲劳 合闸弹簧疲劳1级 100.0
    合闸弹簧疲劳2级 87.3
    合闸弹簧疲劳3级 80.2
    分闸弹簧疲劳 分闸弹簧疲劳1级 72.5
    分闸弹簧疲劳2级 83.3
    分闸弹簧疲劳3级 67.0
    下载: 导出CSV
  • [1] 段传宗, 鄢志平, 鄢志辉. 高压断路器故障检测与诊断技术[M]. 北京: 中国电力出版社, 2014: 24-28.

    DUAN C Z, YAN Z P, YAN Z H. Fault detection and diagnosis technology of high voltage circuit breaker[M]. Beijing: China Electric Power Press, 2014: 24-28.
    [2] HEISING C R, JANSSEN A L J, LANZ W, et al. Summary of CIGRE 13.06 working group world wide reliability data and maintenance cost data on high voltage circuit breakers above 63KV[C]//Proceedings of 1994 IEEE Industry Applications Society Annual Meeting. Denver: IEEE, 1994: 2226-2234.
    [3] 刘永超. 高压真空断路器振动特征提取及故障诊断方法研究[D]. 焦作: 河南理工大学, 2017.

    LIU Y C. Research on vibration characteristic extraction and fault diagnosis of high voltage vacuum circuit breaker[D]. Jiaozuo: Henan Polytechnic University, 2017. (in Chinese)
    [4] 刘明亮. 高压断路器机械振动信号特征提取及故障诊断研究[D]. 哈尔滨: 东北林业大学, 2017.

    LIU M L. Research of mechanical vibration signal feature extraction and fault diagnosis of high voltage circuit breaker[D]. Harbin: Northeast Forestry University, 2017. (in Chinese)
    [5] 赵国栋. 高压断路器在线监测与智能故障诊断方法研究[D]. 南京: 东南大学, 2017.

    ZHAO G D. Research on on-line monitoring and intelligent fault diagnosis method for HVCB[D]. Nanjing: Southeast University, 2017. (in Chinese)
    [6] 孙韬. 基于加权证据理论的高压断路器机械故障智能诊断技术[D]. 南京: 东南大学, 2017.

    SUN T. Intelligent mechanical fault diagnosis of high voltage circuit breaker based on weighted evidence theory[D]. Nanjing: Southeast University, 2017. (in Chinese)
    [7] 黄建. 特征评估高压断路器机械故障诊断方法的研究[J]. 高压电器, 2015, 51(12): 89-95.

    HUANG J. Research on machinery fault diagnosis of high voltage circuit breaker based on feature evaluation[J]. High Voltage Apparatus, 2015, 51(12): 89-95. (in Chinese)
    [8] CIABATTONI L, FERRACUTI F, FREDDI A, et al. Statistical spectral analysis for fault diagnosis of rotating machines[J]. IEEE Transactions on Industrial Electronics, 2018, 65(5): 4301-4310. doi: 10.1109/TIE.2017.2762623
    [9] 袁建虎, 韩涛, 唐建, 等. 基于小波时频图和CNN的滚动轴承智能故障诊断方法[J]. 机械设计与研究, 2017, 33(2): 93-97.

    YUAN J H, HAN T, TANG J, et al. An approach to intelligent fault diagnosis of rolling bearing using wavelet time-frequency representations and CNN[J]. Machine Design and Research, 2017, 33(2): 93-97. (in Chinese)
    [10] 须颖, 李昊东, 安冬. 基于GLCM-SDAE的滚动轴承故障诊断方法[J]. 沈阳建筑大学学报(自然科学版), 2020, 36(4): 720-728.

    XU Y, LI H D, AN D. Fault diagnosis of rolling bearing based on GLCM-SDAE[J]. Journal of Shenyang Jianzhu University (Natural Science), 2020, 36(4): 720-728. (in Chinese)
    [11] 尚洁. 基于LTP灰度共生矩阵和SVM的织物疵点检测分类算法研究[D]. 成都: 成都理工大学, 2020.

    SHANG J. Research on fabric defect detection and classification algorithm based on LTP gray-level co-occurrence matrix and SVM[D]. Chengdu: Chengdu University of Technology, 2020. (in Chinese)
    [12] PALIWAL M, KUMAR U A. Neural networks and statistical techniques: a review of applications[J]. Expert Systems with Applications, 2009, 36(1): 2-17. doi: 10.1016/j.eswa.2007.10.005
    [13] ZHANG J F, LIU M L, WANG K Q, et al. Mechanical fault diagnosis for HV circuit breakers based on ensemble empirical mode decomposition energy entropy and support vector machine[J]. Mathematical Problems in Engineering, 2015, 2015: 101757.
    [14] HUANG N T, CHEN H J, ZHANG S X, et al. Mechanical fault diagnosis of high voltage circuit breakers based on wavelet time-frequency entropy and one-class support vector machine[J]. Entropy, 2015, 18(1): 7. doi: 10.3390/e18010007
    [15] 王英英, 罗毅, 涂光瑜. 基于粗糙集与决策树的配电网故障诊断方法[J]. 高电压技术, 2008, 34(4): 794-798.

    WANG Y Y, LUO Y, TU G Y. Fault diagnosis method for distribution networks based on the rough sets and decision tree theory[J]. High Voltage Engineering, 2008, 34(4): 794-798. (in Chinese)
    [16] 顾礼斌, 李勇刚. 基于模糊 k近邻的变电站主接线类型自动识别方法[J]. 广东电力, 2018, 31(2): 130-135. doi: 10.3969/j.issn.1007-290X.2018.002.021

    GU L B, LI Y G. Automatic identification method for substation main wiring modes based on fuzzy k-nearest neighbor algorithm[J]. Guangdong Electric Power, 2018, 31(2): 130-135. (in Chinese) doi: 10.3969/j.issn.1007-290X.2018.002.021
    [17] 宁可, 孙同晶, 赵浩强. 基于属性关联的朴素贝叶斯分类算法[J]. 计算机工程, 2018, 44(6): 18-23. doi: 10.3969/j.issn.1000-3428.2018.06.004

    NING K, SUN T J, ZHAO H Q. Naive Bayesian classification algorithm based on attribute association[J]. Computer Engineering, 2018, 44(6): 18-23. (in Chinese) doi: 10.3969/j.issn.1000-3428.2018.06.004
    [18] 张伟, 王志海, 原继东, 等. 一种局部属性加权朴素贝叶斯分类算法[J]. 北京交通大学学报, 2018, 42(2): 14-21.

    ZHANG W, WANG Z H, YUAN J D, et al. A locally attribute weighted naive Bayes classifier[J]. Journal of Beijing Jiaotong University, 2018, 42(2): 14-21. (in Chinese)
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  45
  • HTML全文浏览量:  18
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-08
  • 网络出版日期:  2024-03-08
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回