留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

动力集中动车组车体司机室结构优化设计

柳占宇 于德壮 杨帆 李冬园 张威 张昭

柳占宇,于德壮,杨帆, 等. 动力集中动车组车体司机室结构优化设计[J]. 机械科学与技术,2024,43(2):312-317 doi: 10.13433/j.cnki.1003-8728.20220195
引用本文: 柳占宇,于德壮,杨帆, 等. 动力集中动车组车体司机室结构优化设计[J]. 机械科学与技术,2024,43(2):312-317 doi: 10.13433/j.cnki.1003-8728.20220195
LIU Zhanyu, YU Dezhuang, YANG Fan, LI Dongyuan, ZHANG Wei, ZHANG Zhao. Optimization Design of Cab Structure in Power Concentrated EMU[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(2): 312-317. doi: 10.13433/j.cnki.1003-8728.20220195
Citation: LIU Zhanyu, YU Dezhuang, YANG Fan, LI Dongyuan, ZHANG Wei, ZHANG Zhao. Optimization Design of Cab Structure in Power Concentrated EMU[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(2): 312-317. doi: 10.13433/j.cnki.1003-8728.20220195

动力集中动车组车体司机室结构优化设计

doi: 10.13433/j.cnki.1003-8728.20220195
基金项目: 辽宁省自然科学基金项目(2019-KF-05-07)
详细信息
    作者简介:

    柳占宇,教授级高级工程师,liuzhanyu_dl@crrcgc.cc

    通讯作者:

    张昭,教授,博士生导师,zhangz@dlut.edu.cn

  • 中图分类号: U271

Optimization Design of Cab Structure in Power Concentrated EMU

  • 摘要: 动力集中动车组司机室结构对保证司机人员安全有重要作用,在确保结构安全的基础上,设置合理的传力路径进行结构补强,可以实现碰撞工况下的司机室角柱和防撞柱及相关结构的轻量化,对高速重载要求下的动机集中动车组设计有重要意义。采用拓扑优化方法对某型动力集中动车组车体司机室结构进行拓扑优化设计,寻求角柱和防撞柱的最优布局,以此为基础,重构司机室结构并进行尺寸优化。计算结果表明,通过拓扑优化和几何尺寸优化的一体化设计,在满足原始设计结构的设计强度的条件下,基于拓扑构型所设计的司机室结构重量明显减小,其中重构的防撞柱构型和重构的角柱构型总重量相对于初始设计减重67.5%,减重效果明显。
  • 图  1  动力集中车车体有限元模型

    Figure  1.  Finite element model of power concentrated EMU body

    图  2  动车防撞柱和角柱设计域

    Figure  2.  Design domains of collision and corner pillars of a power vehicle

    图  3  防撞柱和角柱传力路径

    Figure  3.  Load paths of collision and corner pillars

    图  4  通过拓扑优化重构的防撞柱

    Figure  4.  Re-built collision pillar after topological optimization

    图  5  拓扑优化前后角柱几何形貌对比

    Figure  5.  Comparison of geometrical shape of corner pillar before and after topological optimization

    图  6  碰撞工况下重构防撞柱应力云图

    Figure  6.  Stress cloud map of re-built collision pillars in collision

    图  7  碰撞工况下重构司机室角柱应力云图

    Figure  7.  Stress cloud map of re-built corner pillars in collision of driver's room

    图  8  重构防撞柱和角柱疲劳计算节点选取示意图

    Figure  8.  Selected nodes for computing the fatigue of re-built collision and corner pillars

    表  1  疲劳载荷工况列表

    Table  1.   Fatigue load conditions

    工况纵向加速度/g 垂向加速度/g 横向加速度/g
    10.15−0.750.2
    2−0.15−0.750.2
    30.15−0.75−0.2
    4−0.15−0.75−0.2
    50.15−1.250.2
    6−0.15−1.250.2
    70.15−1.25−0.2
    8−0.15−1.25−0.2
    下载: 导出CSV

    表  3  疲劳载荷工况作用下节点第三主应力值

    Table  3.   The third principal stress of node in different fatigue load conditions MPa

    工况 节点
    6643301 6642710 6632435 6620904 6625635
    1 1.25 −1.70 −0.78 1.12 1.50
    2 1.05 −1.60 −0.83 1.11 1.30
    3 1.69 −1.81 −0.88 1.33 2.26
    4 1.48 −1.71 −0.92 1.34 2.07
    5 2.17 −2.83 −1.34 1.93 2.69
    6 1.97 −2.74 −1.39 1.93 2.49
    7 2.60 −2.94 −1.44 2.15 3.45
    8 2.39 −2.85 −1.49 2.16 3.26
    下载: 导出CSV

    表  2  疲劳载荷工况作用下节点第一主应力值

    Table  2.   The first principal stress of node in different fatigue load conditions MPa

    工况 节点
    6643301 6642710 6632435 6620904 6625635
    1 6.94 5.62 7.12 3.38 4.82
    2 6.03 5.18 6.68 3.34 4.50
    3 9.96 6.87 8.82 3.02 6.21
    4 9.07 6.43 8.29 2.98 5.88
    5 12.26 9.63 12.36 5.43 8.39
    6 11.36 9.20 11.84 5.40 8.07
    7 15.29 10.88 13.98 5.12 9.77
    8 14.40 10.44 13.46 5.08 9.45
    下载: 导出CSV

    表  4  节点的应力范围

    Table  4.   Stress domains of nodes

    节点最大值/MPa最小值/MPa应力范围/MPa
    664330115.291.0514.24
    664271010.88−2.9413.82
    663243513.98−1.4915.47
    66209045.431.114.32
    66256359.771.308.47
    下载: 导出CSV
  • [1] CHENG G D, XU L. Two-scale topology design optimization of stiffened or porous plate subject to out-of-plane buckling constraint[J]. Structural and Multidisciplinary Optimization, 2016, 54(5): 1283-1296. doi: 10.1007/s00158-016-1542-y
    [2] 刘丰嘉, 唐兆, 张建军. 机车车辆端部结构拓扑-参数一体化优化方法[J]. 机械工程学报, 2020, 56(20): 134-145. doi: 10.3901/JME.2020.20.134

    LIU F J, TANG Z, ZHANG J J. Holistic topology-parameter optimization method for the rail vehicle end structure[J]. Journal of Mechanical Engineering, 2020, 56(20): 134-145. (in Chinese) doi: 10.3901/JME.2020.20.134
    [3] 陈春强, 陈前. 电流变夹层板的拓扑优化研究[J]. 工程力学, 2016, 33(S1): 290-295.

    CHEN C Q, CHEN Q. Topology optimization of semiactive vibration control for an electrorheological sandwich plate[J]. Engineering Mechanics, 2016, 33(S1): 290-295. (in Chinese)
    [4] 张昭, 谷思生, 王明杰, 等. 大功率电力机车车体与变压器关键部位强度计算及设计[J]. 计算力学学报, 2009, 26(3): 385-389.

    ZHANG Z, GU S S, WANG M J, et al. Design and strength calculation of key components of main transformer and body of high-power electric locomotive[J]. Chinese Journal of Computational Mechanics, 2009, 26(3): 385-389. (in Chinese)
    [5] DENG Y B, ZHOU T, LIU Z Y, et al. Topology optimization of electrode patterns for electroosmotic micromixer[J]. International Journal of Heat and Mass Transfer, 2018, 126: 1299-1315. doi: 10.1016/j.ijheatmasstransfer.2018.06.065
    [6] ABDI M, ASHCROFT I, WILDMAN R. Topology optimization of geometrically nonlinear structures using an evolutionary optimization method[J]. Engineering Optimization, 2018, 50(11): 1850-1870. doi: 10.1080/0305215X.2017.1418864
    [7] WAN C Y, LI X F, LI J Y, et al. Dynamic topology optimization for ATP hanging beam of EMU bogie based on hyperworks[J]. Advanced Materials Research, 2011, 383-390: 5441-5446. doi: 10.4028/www.scientific.net/AMR.383-390.5441
    [8] MANIOS S E, LAGAROS N D, NASSIOPOULOS E. Nested topology optimization methodology for designing two-wheel chassis[J]. Frontiers in Built Environment, 2019, 5: 34. doi: 10.3389/fbuil.2019.00034
    [9] TYFLOPOULOS E, LIEN M, STEINERT M. Optimization of brake calipers using topology optimization for additive manufacturing[J]. Applied Sciences, 2021, 11(4): 1437. doi: 10.3390/app11041437
    [10] XU G J, DAI N. Michell truss design for lightweight gear bodies[J]. Mathematical Biosciences and Engineering, 2021, 18(2): 1653-1669. doi: 10.3934/mbe.2021085
    [11] KEFAL A, SOHOULI A, OTERKUS E, et al. Topology optimization of cracked structures using peridynamics[J]. Continuum Mechanics and Thermodynamics, 2019, 31(6): 1645-1672. doi: 10.1007/s00161-019-00830-x
    [12] 高月华, 赵丹, 谢素明, 等. 基于代理模型的焊接构架纵梁优化设计[J]. 大连交通大学学报, 2018, 39(4): 32-36.

    GAO Y H, ZHAO D, XIE S M, et al. Optimization design on longeron of welded frames based on surrogate model[J]. Journal of Dalian Jiaotong University, 2018, 39(4): 32-36. (in Chinese)
    [13] 高月华, 范铮, 程亚军, 等. 基于子结构法的动车组设备舱支架优化设计[J]. 大连交通大学学报, 2016, 37(4): 33-37.

    GAO Y H, FAN Z, CHENG Y J, et al. Optimization design of high-speed train equipment cabin bracket based on substructure method[J]. Journal of Dalian Jiaotong University, 2016, 37(4): 33-37. (in Chinese)
    [14] 郭珍江, 刘厚林, 刘丰芹. 基于有限元法的动车组行李架仿真分析与结构优化[J]. 电力机车与城轨车辆, 2021, 44(3): 47-51.

    GUO Z J, LIU H L, LIU F Q. Simulation analysis and structure optimization of EMU luggage rack based on finite element method[J]. Electric Locomotives & Mass Transit Vehicles, 2021, 44(3): 47-51. (in Chinese)
    [15] 王晓明, 宋晓文, 刘德刚, 等. 动车组行李架支座结构拓扑优化设计[J]. 铁道车辆, 2013, 51(2): 11-14.

    WANG X M, SONG X W, LIU D G, et al. The topologic optimization design of the luggage rack brackets on multiple units[J]. Rolling Stock, 2013, 51(2): 11-14. (in Chinese)
    [16] 李超, 商跃进, 王红. 动车组转向架转臂拓扑优化设计[J]. 兰州交通大学学报, 2015, 34(6): 131-133.

    LI C, SHANG Y J, WANG H. The topological optimization design of bogie tumbler for electric multiple unit[J]. Journal of Lanzhou Jiaotong University, 2015, 34(6): 131-133. (in Chinese)
    [17] 姚皓杰, 商跃进, 王红, 等. 基于ANSYS的机车牵引装置三角架拓扑优化[J]. 铁道机车与动车, 2013(7): 16-18.

    YAO H J, SHANG Y J, WANG H, et al. ANSYS based topological optimization of triangular support of trasction device[J]. Railway Locomotive and Motor Car, 2013(7): 16-18. (in Chinese)
    [18] 朱健伟. 悬挂式单轨车辆转向架构架结构优化[J]. 机车电传动, 2020(5): 118-122.

    ZHU J W. Structure optimization of bogie frame for suspended monorail vehicle[J]. Electric Drive for Locomotives, 2020(5): 118-122. (in Chinese)
    [19] 孙业琛, 孙丽萍, 王玉艳, 等. 高速动车组排障器结构轻量化研究[J]. 大连交通大学学报, 2020, 41(4): 86-89.

    SUN Y C, SUN L P, WANG Y Y, et al. Research on lightweight cowcatcher structures of high speed EMU[J]. Journal of Dalian Jiaotong University, 2020, 41(4): 86-89. (in Chinese)
    [20] 卢佳妮, 孙丽萍, 王玉艳, 等. 某跨座式单轨车冲击座轻量化研究[J]. 大连交通大学学报, 2021, 42(3): 8-12.

    LU J N, SUN L P, WANG Y Y, et al. Study of lightweight striker for a straddle-type monorail[J]. Journal of Dalian Jiaotong University, 2021, 42(3): 8-12. (in Chinese)
    [21] 陈秉智, 张雪青, 邱广宇. 时速400公里高速列车底架拓扑优化[J]. 机械设计与制造, 2021(7): 272-275.

    CHEN B Z, ZHANG X Q, QIU G Y. Topology optimization of underframe for 400km/h high-speed train[J]. Machinery Design & Manufacture, 2021(7): 272-275. (in Chinese)
    [22] 曾晶晶, 卜继玲, 刘建勋. 转向架齿轮箱吊杆的优化设计[J]. 计算机辅助工程, 2013, 22(2): 27-30.

    ZENG J J, PU J L, LIU J X. Optimization design of bogie gear box suspender[J]. Computer Aided Engineering, 2013, 22(2): 27-30. (in Chinese)
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  55
  • HTML全文浏览量:  17
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-09
  • 网络出版日期:  2024-03-08
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回