留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑柔性车架的无杆飞机牵引系统平顺性研究

祝恒佳 吕晓 张柏枝 张威

祝恒佳,吕晓,张柏枝, 等. 考虑柔性车架的无杆飞机牵引系统平顺性研究[J]. 机械科学与技术,2022,41(9):1458-1467 doi: 10.13433/j.cnki.1003-8728.20220187
引用本文: 祝恒佳,吕晓,张柏枝, 等. 考虑柔性车架的无杆飞机牵引系统平顺性研究[J]. 机械科学与技术,2022,41(9):1458-1467 doi: 10.13433/j.cnki.1003-8728.20220187
ZHU Hengjia, LYU Xiao, ZHANG Baizhi, ZHANG Wei. Study on Ride Comfort of Towbarless Aircraft Taxiing System Considering Vehicle Frame Flexibility[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(9): 1458-1467. doi: 10.13433/j.cnki.1003-8728.20220187
Citation: ZHU Hengjia, LYU Xiao, ZHANG Baizhi, ZHANG Wei. Study on Ride Comfort of Towbarless Aircraft Taxiing System Considering Vehicle Frame Flexibility[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(9): 1458-1467. doi: 10.13433/j.cnki.1003-8728.20220187

考虑柔性车架的无杆飞机牵引系统平顺性研究

doi: 10.13433/j.cnki.1003-8728.20220187
基金项目: 国家自然科学基金项目 (12002367, U2033208)与中央高校基本科研业务费项目(3122019087)
详细信息
    作者简介:

    祝恒佳(1987−),讲师,博士,研究方向为车辆动力学、机场特种车辆与作业,hjzhu@cauc.edu.cn

    通讯作者:

    张威,教授,博士, weizhang@cauc.edu.cn

  • 中图分类号: V351;TH113

Study on Ride Comfort of Towbarless Aircraft Taxiing System Considering Vehicle Frame Flexibility

  • 摘要: 无杆飞机牵引车(TLTV)通过车架上抱轮机构将飞机前机轮夹紧、抱起,形成飞机牵引系统,通过牵引车提供动力将飞机牵引至指定地点。考虑无杆飞机牵引车柔性车架作用,基于牛顿第二定理和梁的弯曲变形理论推导无杆飞机牵引刚柔耦合系统振动微分方程,对比分析低速与高速牵引作业时,随机、脉冲机场路面激励输入工况下牵引车座椅平面、牵引车质心、飞机机体等关键测点的平顺性,研究飞机牵引系统准静态和动态力学模型的时域振动特性差异。进一步研究高速牵引作业时,飞机质量、车架柔性、牵引车质心及座椅位置对飞机牵引系统平顺性的影响规律,结果表明适当改变牵引系统关键参数可提高飞机牵引系统的平顺性。
  • 图  1  无杆飞机牵引车

    图  2  飞机牵引系统

    图  3  无杆飞机牵引系统动力学模型

    图  4  无杆飞机牵引车车架

    图  5  无杆飞机牵引刚柔耦合模型

    图  6  悬臂梁在单载荷下的变形

    图  7  车架截面弯曲刚度计算模型

    图  8  A级路面输入激励

    图  9  随机路面工况加速度时域响应

    图  10  凸起脉冲路面断面示意图

    图  11  脉冲路面工况加速度时域响应

    表  1  无杆飞机牵引系统模型参数

        参数名称 数值      参数名称 数值
    牵引车质量 $ m_1 $ 1.3×104 kg 前机轮刚度 $ k_{\text{4}} $ 2×106 N/m
    牵引车质心处转动惯量 $ J_1 $ 5.4×104 kg·m2 前机轮阻尼系数 $ c_4 $ 800 N·s/m
    飞机质量 $ m_2 $ 6.0×104 kg 主机轮刚度 $ k_{\text{5}} $ 1×107 N/m
    飞机质心处转动惯量 $ J_{\text{2}} $ 4.7×106 kg·m2 主机轮阻尼系数 $ c_5 $ 4 000 N·s/m
    座椅簧上质量 $ m_3 $ 80 kg 座椅与前车轴距离 $ l_1 $ 3 000 mm
    前起落架簧下质量 $ m_4 $ 400 kg 前车轴与牵引车质心距离 $ l_2 $ 500 mm
    主起落架簧下质量 $ m_{\text{5}} $ 2 000 kg 抱轮机构与牵引车质心距离 $ l_3 $ 2 000 mm
    牵引车前轮刚度 $ k_{\text{1f}} $ 4×106 N/m 抱轮机构与后车轴距离 $ l_4 $ 1 500 mm
    牵引车前轮阻尼系数 $ c_{1{\text{f}}} $ 1 000 N·s/m 前起落架与飞机质心距离 $ l_{\text{5}} $ 15 000 mm
    牵引车后轮刚度 $ k_{\text{1r}} $ 5×106 N/m 主起落架与飞机质心距离 $ l_{\text{6}} $ 1 000 mm
    牵引车后轮阻尼系数 $ c_{1{\text{r}}} $ 1 000 N·s/m 座椅与牵引车质心距离 $ l_{\text{f}} $ 3 500 mm
    驾驶员座椅刚度 $ k_{\text{3}} $ 1.5×104 N/m 后车轴与牵引车质心距离 $ l_{\text{r}} $ 3 500 mm
    座椅阻尼系数 $ c_3 $ 300 N·s/m
    下载: 导出CSV

    表  2  起落架缓冲器参数

       参数 前起落架 主起落架
    初始气压P0/Pa 1.62×106 1.896×106
    初始容积V0/m3 2.805×10−3 1.00×10−2
    活塞有效面积Aa/m2 7.124×10−3 2.483×10−2
    大气压强Ps/Pa 1.01×105 1.01×105
    下载: 导出CSV

    表  3  起落架缓冲器油腔参数

        参数 前起落架 主起落架
    油液作用面积Aoil/m2 4.885×10−3 1.926×10−2
    油孔卸荷系数Cd 0.83 0.95
    油孔面积Ad/m2 2.632×10−5 1.452×10−4
    油液密度ρ0/(kg·m−3 0.86×103 0.86×103
    下载: 导出CSV

    表  4  加速度均方根值

    对象 参数/
    (m·s−2
    牵引速度/
    (km·h−1
    高低速结果
    比值/%
    10 40
    座椅平面垂向运动 $ {\bar a_w} $ 1.21 2.44 202
    $ {a_w} $ 1.66 2.82 170
    牵引车垂向运动 $ {a_w} $ 0.55 1.50 273
    机体垂向运动 $ {a_w} $ 0.028 0.070 250
    下载: 导出CSV

    表  5  最大加速度值

    对象 参数/ (m·s−2 牵引速度/ (km·h−1 高低速结果
    比值/%
    10 40
    座椅垂向运动 $ {a_{\max }} $ 14.26 19.87 140
    牵引车垂向运动 10.16 13.28 131
    机体垂向运动 0.14 0.15 107
    下载: 导出CSV

    表  6  飞机质量对车体垂向运动加速度均方根影响

    m2/kg 5.0×104 6.0×104 7.0×104
    aw/(m·s2 1.50 1.50 1.51
    下载: 导出CSV

    表  7  车架弯曲对车体垂向运动加速度均方根影响

    EI/105kN·m2 0.7 1.0 1.19 1.3 1.7 2.1 2.5
    aw/(m·s−2 1.59 1.61 1.50 1.27 1.09 1.03 1.03
    下载: 导出CSV

    表  8  牵引车质心位置对车体垂向运动加速度均方根影响

    l2/mm 200 300 400 500 600
    l3/mm 2 300 2 200 2 100 2 000 1 900
    aw/(m·s−2 1.26 1.28 1.16 1.50 1.24
    下载: 导出CSV

    表  9  座椅平面加权加速度均方根值

    m2/kg 5.0×104 6.0×104 7.0×104
    $ {\bar a_w} $/(m·s−2 2.44 2.44 2.45
    aw/(m·s−2 2.81 2.82 2.82
    下载: 导出CSV

    表  10  车架弯曲刚度对座椅平面加权加速度均方根值的影响

    EI/105kN·m2 0.7 1.0 1.19 1.3 1.7 2.1 2.5
    $ {\bar a_w} $/(m·s−2 2.53 2.47 2.44 2.42 2.41 2.41 2.40
    aw/(m·s−2 2.89 2.84 2.82 2.80 2.78 2.77 2.76
    下载: 导出CSV

    表  11  牵引车座椅位置对座椅平面加权加速度均方根值的影响

    lf/ mm 2500 3500 4500
    $ {\bar a_w} $/(m·s−2 2.40 2.44 2.47
    aw/(m·s−2 2.79 2.82 2.85
    下载: 导出CSV

    表  12  牵引车质心位置对座椅平面加权加速度均方根值的影响

    l2/mm 200 300 400 500 600
    l3/mm 2300 2200 2100 2000 1900
    $ {\bar a_w} $/(m·s−2 3.01 2.98 2.95 2.44 2.47
    aw/(m·s−2 3.49 3.44 3.41 2.82 2.84
    下载: 导出CSV
  • [1] 张明, 吴晓宇. 飞机主起落架刹车诱导抖振分析[J]. 机械科学与技术, 2018, 37(11): 1783-1790 doi: 10.13433/j.cnki.1003-8728.20180076

    ZHANG M, WU X Y. Analysis on brake induced vibration of aircraft main landing gear[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(11): 1783-1790 (in Chinese) doi: 10.13433/j.cnki.1003-8728.20180076
    [2] LIANG L, GU Q K, LIANG Z, et al. Simulation analysis of aircraft taxiing dynamic load on random road roughness[J]. Procedia Engineering, 2011, 12: 163-169
    [3] 齐浩, 王泽河, 朱华娟, 等. 飞机起落架落震动力学建模及仿真分析[J]. 机床与液压, 2021, 49(8): 141-146 doi: 10.3969/j.issn.1001-3881.2021.08.030

    QI H, WANG Z H, ZHU H J, et al. Modeling and simulation analysis of landing motion of aircraft landing gear[J]. Machine Tool and Hydraulics, 2021, 49(8): 141-146 (in Chinese) doi: 10.3969/j.issn.1001-3881.2021.08.030
    [4] COETZEE E, KRAUSKOPF B, LOWENBERG M. Analysis of medium-speed runway exit maneuvers[J]. Journal of Aircraft, 2011, 48(5): 1553-1564 doi: 10.2514/1.C031276
    [5] ROGGIA S, CUPERTINO F, GERADA C, et al. A two-degrees-of-freedom system for wheel traction applications[J]. IEEE Transactions on Industrial Electronics, 2018, 65(6): 4483-4491 doi: 10.1109/TIE.2017.2767554
    [6] 陈舒文, 刘晖, 李福海, 等. 含接触碰撞的飞机地面牵引载荷分析[J]. 哈尔滨工程大学学报, 2017, 38(11): 1794-1799 doi: 10.11990/jheu.201606075

    CHEN S W, LIU H, LI F H, et al. Research on aircraft towing load with contact-impact effects[J]. Journal of Harbin Engineering University, 2017, 38(11): 1794-1799 (in Chinese) doi: 10.11990/jheu.201606075
    [7] WANG N J, LIU H B, YANG W H. Path-tracking control of a tractor-aircraft system[J]. Journal of Marine Science and Application, 2012, 11(4): 512-517 doi: 10.1007/s11804-012-1162-x
    [8] SCHMIDT R K, ALLEAU J I. Method of protecting an aircraft landing gear while the aircraft is being towed, and pin for coupling a towing bar to an orientable lower part of a landing gear: US, 9108746[P]. 2011-03-31
    [9] 朱贺, 李静菲. 无杆飞机牵引车转弯牵引工况下的制动稳定性分析[J]. 机械设计, 2020, 37(S1): 72-76

    ZHU H, LI J F. Analysis on braking stability of towbarless towing vehicle under steering and braking[J]. Journal of Machine Design, 2020, 37(S1): 72-76 (in Chinese)
    [10] 解本铭, 朱俊伟, 王伟, 等. 飞机无杆牵引车多工况牵引的平顺性仿真及优化[J]. 机械设计与制造, 2020(10): 1-5 doi: 10.3969/j.issn.1001-3997.2020.10.001

    XIE B M, ZHU J W, WANG W, et al. Simulation and optimization of ride comfort on multi-working for aircraft rodless tractor[J]. Machinery Design & Manufacture, 2020(10): 1-5 (in Chinese) doi: 10.3969/j.issn.1001-3997.2020.10.001
    [11] 王伟, 朱俊伟, 张威. 飞机无杆牵引车系统振动特性仿真分析及优化[J]. 计算机仿真, 2020, 37(6): 54-58 doi: 10.3969/j.issn.1006-9348.2020.06.013

    WANG W, ZHU J W, ZANG W. Simulation analysis and optimization of vibration characteristics of aircraft rodless tractor system[J]. Computer Simulation, 2020, 37(6): 54-58 (in Chinese) doi: 10.3969/j.issn.1006-9348.2020.06.013
    [12] 王能建, 杨万辉, 周丽杰. 无杆飞机牵引车顶推作业仿真研究[J]. 机械设计, 2011, 28(9): 17-20 doi: 10.13841/j.cnki.jxsj.2011.09.019

    WANG N J, YANG W H, ZHOU L J. Simulation research on pushback of towbarless aircraft tractor[J]. Journal of Machine Design, 2011, 28(9): 17-20 (in Chinese) doi: 10.13841/j.cnki.jxsj.2011.09.019
    [13] WANG L W, WANG Q, ZHANG W. Optimization design of towbarless aircraft tractor frame based on ANSYS Workbench[J]. Applied Mechanics and Materials, 2012, 268-270: 921-925 doi: 10.4028/www.scientific.net/AMM.268-270.921
    [14] 聂宏, 薛彩军. 轻型飞机起落架着陆动力学仿真与试验技术[M]. 北京: 科学出版社, 2019

    NIE H, XUE C J. Dynamic simulation and drop test of light airplane landing gear[M]. Beijing: Science Press, 2019 (in Chinese)
    [15] 朱敏. 飞机地面牵引载荷分析[D]. 南京: 南京航空航天大学, 2013: 15-20

    ZHU M. The analysis of the plane ground traction load[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013: 15-20 (in Chinese)
    [16] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 4970-2009 汽车平顺性试验方法[S]. 北京: 中国标准出版社, 2010

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. GB/T 4970-2009 Method of running test-Automotive ride comfort[S]. Beijing: Standards Press of China, 2010 (in Chinese)
    [17] 国际民航组织. 国际民用航空公约附件14-机场 第Ⅰ卷 机场设计和运行[S]. 国际民航组织, 2018

    ICAO. ICAO ANNEX 14, Volume Ⅰ aerodrome design and operations[S]. ICAO, 2018 (in Chinese)
    [18] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 4970-2009 机械振动道路路面谱测量数据报告[S]. 北京: 中国标准出版社, 2006

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. GB/T 4970-2009 Mechanical vibration-Road surface profiles-Reporting of measured data[S]. Beijing: Standards Press of China, 2006 (in Chinese).
    [19] 祝恒佳. 空气互联悬架振动特性研究[D]. 武汉: 华中科技大学, 2018: 60-64

    ZHU H J. Study on the vibration characteristics of the pneumatically interconnected suspensions[D]. Wuhan: Huazhong University of Science and Technology, 2018: 60-64 (in Chinese)
    [20] 刘艳. 飞机起落架系统动力学建模及分析[D]. 天津: 中国民航大学, 2020: 9-12

    LIU Y. Dynamic modeling and analysis of aircraft landing gear system[D]. Tianjin: Civil Aviation University of China, 2020: 9-12 (in Chinese)
    [21] 李福海. 飞机地面牵引移动与停放安全技术研究[D]. 南京: 南京航空航天大学, 2016: 25-31

    LI F H. Research on Aircraft’s towing and parking safety technology[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016: 25-31 (in Chinese)
  • 加载中
图(11) / 表(12)
计量
  • 文章访问数:  181
  • HTML全文浏览量:  117
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-07
  • 刊出日期:  2022-09-05

目录

    /

    返回文章
    返回