留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

融合知识图谱与多元神经网络的发动机故障预测方法

阴艳超 王宵 徐成现

阴艳超,王宵,徐成现. 融合知识图谱与多元神经网络的发动机故障预测方法[J]. 机械科学与技术,2023,42(12):2055-2063 doi: 10.13433/j.cnki.1003-8728.20220184
引用本文: 阴艳超,王宵,徐成现. 融合知识图谱与多元神经网络的发动机故障预测方法[J]. 机械科学与技术,2023,42(12):2055-2063 doi: 10.13433/j.cnki.1003-8728.20220184
YIN Yanchao, WANG Xiao, XU Chengxian. Engine Fault Prediction Method Integrating Knowledge Graph and Multivariate Neural Network[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(12): 2055-2063. doi: 10.13433/j.cnki.1003-8728.20220184
Citation: YIN Yanchao, WANG Xiao, XU Chengxian. Engine Fault Prediction Method Integrating Knowledge Graph and Multivariate Neural Network[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(12): 2055-2063. doi: 10.13433/j.cnki.1003-8728.20220184

融合知识图谱与多元神经网络的发动机故障预测方法

doi: 10.13433/j.cnki.1003-8728.20220184
基金项目: 国家自然科学基金项目(52065033)
详细信息
    作者简介:

    阴艳超(1977−),教授,博士生导师,博士,研究方向为智能制造、知识服务,yinyc@163.com

  • 中图分类号: TP391

Engine Fault Prediction Method Integrating Knowledge Graph and Multivariate Neural Network

  • 摘要: 针对汽车发动机故障率高且种类多,故障征兆与故障之间存在多对多的复杂耦联关系,故障溯源难度大、准确率低等问题,提出了融合知识图谱和多元神经网络的发动机故障智能预测方法。将发动机运行状态、故障现象、故障原因和维修记录作为输入信息,通过知识抽取、消歧和加工形成为可表示、可推理的结构化知识网络,并进行特征向量转换;建立了包含故障记录嵌入层、卷积层、GRU门控层和注意力机制的多元神经网络通路,通过特征向量训练形成了发动机故障预测模型,实现了发动机定性故障现象到定量故障推理,再到定性故障预测输出的映射变换;通过实际维修案例验证了所提KG-CNN-GRU-Att方法的可行性和有效性。
  • 图  1  发动机故障智能预测框架

    Figure  1.  Intelligent engine fault prediction framework

    图  2  发动机故障知识图谱构建流程

    Figure  2.  Engine fault knowledge graph construction procedures

    图  3  汽车发动机故障维修知识图谱构建部分实例

    Figure  3.  Some examples of automotive engine fault maintenance knowledge graph construction

    图  4  部分字向量结果图

    Figure  4.  Partial results of word vector

    图  5  多元混合神经网络模型

    Figure  5.  Multivariate fusion neural network model

    图  6  GRU神经网络结构

    Figure  6.  GRU neural network structure

    图  7  注意力机制运行机理图

    Figure  7.  Attention mechanism operating mechanisms

    图  8  不同模型融合知识图谱预测效果对比图

    Figure  8.  Comparison of prediction effect of different models fusion knowledge graph

    图  9  未融合知识图谱模型精确率对比图

    Figure  9.  Comparison of precision rates of unfused knowledge graph models

    表  1  实验参数设置

    Table  1.   Experimental parameter setting

    超参数参数名参数值
    h 隐藏层节点数 198
    droupout 丢弃率 0.2
    lr 学习率 2 × 10−4
    epoch 训练次数 100
    loss 损失函数 Sigmod
    下载: 导出CSV

    表  2  不同模型融合知识图谱的故障预测效果对比

    Table  2.   Comparison of fault prediction effect of different models in fusion knowledge graph

    模型P/%R/%F1/%
    KG-CNN 75.21 68.02 71.43
    KG-LSTM 76.84 70.31 73.43
    KG-Bi-lstm 77.04 71.23 74.02
    KG-CNN-LSTM 79.37 72.65 75.86
    KG-CNN-GRU-Att 80.64 74.59 77.50
    下载: 导出CSV

    表  3  未融合知识图谱的不同模型的故障预测效果对比

    Table  3.   Comparison of fault prediction effects of different models without fusion knowledge graph

    模型P/%R/%F1/%
    CNN 74.37 67.49 70.76
    LSTM 74.61 69.82 72.14
    Bi-lstm 75.17 70.35 72.68
    LSTM 77.24 71.26 74.13
    CNN-GRU-Att 79.51 72.03 75.59
    下载: 导出CSV
  • [1] 王金鑫, 王忠巍, 马修真, 等. 柴油机润滑系统多故障耦合关系分析及解耦技术[J]. 哈尔滨工程大学学报, 2021, 42(6): 825-832.

    WANG J X, WANG Z W, MA X Z, et al. Multi-fault coupling analysis and decoupling approach for diesel engine lubrication system[J]. Journal of Harbin Engineering University, 2021, 42(6): 825-832. (in Chinese)
    [2] 陈鲲, 茆志伟, 张进杰, 等. 基于和声搜索优化栈式自编码器的柴油发动机故障诊断[J]. 机械工程学报, 2020, 56(11): 132-140. doi: 10.3901/JME.2020.11.132

    CHEN K, MAO Z W, ZHANG J J, et al. Diesel engine fault diagnosis based on stack autoencoder optimized by harmony search[J]. Journal of Mechanical Engineering, 2020, 56(11): 132-140. (in Chinese) doi: 10.3901/JME.2020.11.132
    [3] 柳长源, 车路平, 毕晓君. 基于TWSVM算法的发动机故障识别方法[J]. 内燃机学报, 2019, 37(1): 84-89.

    LIU C Y, CHE L P, BI X J. Engine fault identification based on TWSVM algorithm[J]. Transactions of CSICE, 2019, 37(1): 84-89. (in Chinese)
    [4] 杜党党, 贾晓亮, 王卓. 基于故障彩色图谱的航空发动机故障模式识别[J]. 计算机集成制造系统, 2018, 24(9): 2297-2305.

    DU D D, JIA X L, WANG Z. Fault model identification method for aero engines based on fault color picture[J]. Computer Integrated Manufacturing Systems, 2018, 24(9): 2297-2305. (in Chinese)
    [5] 刘梓权, 王慧芳. 基于知识图谱技术的电力设备缺陷记录检索方法[J]. 电力系统自动化, 2018, 42(14): 158-164.

    LIU Z Q, WANG H F. Retrieval method for defect records of power equipment based on knowledge graph technology[J]. Automation of Electric Power Systems, 2018, 42(14): 158-164. (in Chinese)
    [6] 徐增林, 盛泳潘, 贺丽荣, 等. 知识图谱技术综述[J]. 电子科技大学学报, 2016, 45(4): 589-606.

    XU Z L, SHENG Y P, HE L R, et al. Review on knowledge graph techniques[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(4): 589-606. (in Chinese)
    [7] 刘峤, 李杨, 段宏, 等. 知识图谱构建技术综述[J]. 计算机研究与发展, 2016, 53(3): 582-600.

    LIU Q, LI Y, DUAN H, et al. Knowledge graph construction techniques[J]. Journal of Computer Research and Development, 2016, 53(3): 582-600. (in Chinese)
    [8] 陈果, 杨默晗, 于平超. 基于深度学习的航空发动机不平衡故障部位识别[J]. 航空动力学报, 2020, 35(12): 2602-2615.

    CHEN G, YANG M H, YU P C. Aero-engine unbalanced fault location identification method based on deep learning[J]. Journal of Aerospace Power, 2020, 35(12): 2602-2615. (in Chinese)
    [9] 姜洁, 李秋红, 张高钱, 等. 基于NN-ELM的航空发动机燃油系统执行机构故障诊断[J]. 航空动力学报, 2016, 31(2): 484-492.

    JIANG J, LI Q H, ZHANG G Q, et al. Fault diagnosis for actuators of aero-engine fuel system based on NN-ELM[J]. Journal of Aerospace Power, 2016, 31(2): 484-492. (in Chinese)
    [10] 李本威, 林学森, 杨欣毅, 等. 深度置信网络在发动机气路部件性能衰退故障诊断中的应用研究[J]. 推进技术, 2016, 37(11): 2173-2180.

    LI B W, LIN X S, YANG X Y, et al. Research on application of deep belief networks on engine gas path component performance degradation defect diagnostics[J]. Journal of Propulsion Technology, 2016, 37(11): 2173-2180. (in Chinese)
    [11] 张善文, 王振, 王祖良. 结合知识图谱与双向长短时记忆网络的小麦条锈病预测[J]. 农业工程学报, 2020, 36(12): 172-178.

    ZHANG S W, WANG Z, WANG Z L. Prediction of wheat stripe rust disease by combining knowledge graph and bidirectional long short term memory network[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(12): 172-178. (in Chinese)
    [12] WANG H F, LIU Z Q. An error recognition method for power equipment defect records based on knowledge graph technology[J]. Frontiers of Information Technology & Electronic Engineering, 2019, 20(11): 1564-1578.
    [13] ZHANG C H, ZHOU M, HAN X, et al. Knowledge graph embedding for hyper-relational data[J]. Tsinghua Science and Technology, 2017, 22(2): 185-197. doi: 10.23919/TST.2017.7889640
    [14] WANG H T, HE J, ZHANG X H, et al. A short text classification method based on N-gram and CNN[J]. Chinese Journal of Electronics, 2020, 29(2): 248-254. doi: 10.1049/cje.2020.01.001
    [15] LI N, CAO J D. Synchronization criteria for multiple memristor-based neural networks with time delay and inertial term[J]. Science China Technological Sciences, 2018, 61(4): 612-622. doi: 10.1007/s11431-017-9189-3
    [16] DURRANI S P, BALLUFF S, WURZER L, et al. Photovoltaic yield prediction using an irradiance forecast model based on multiple neural networks[J]. Journal of Modern Power Systems and Clean Energy, 2018, 6(2): 255-267. doi: 10.1007/s40565-018-0393-5
    [17] WANG T C, WANG J Y, WU Y, et al. A fault diagnosis model based on weighted extension neural network for turbo-generator sets on small samples with noise[J]. Chinese Journal of Aeronautics, 2020, 33(10): 2757-2769. doi: 10.1016/j.cja.2020.06.024
    [18] HU X D, WANG X Q, MENG F J, et al. Gabor-CNN for object detection based on small samples[J]. Defence Technology, 2020, 16(6): 1116-1129. doi: 10.1016/j.dt.2019.12.002
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  152
  • HTML全文浏览量:  72
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-07
  • 刊出日期:  2023-12-25

目录

    /

    返回文章
    返回