留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

斜支承导向的TPU薄膜振动特性研究

冯谣 武吉梅

冯谣,武吉梅. 斜支承导向的TPU薄膜振动特性研究[J]. 机械科学与技术,2023,42(12):2003-2010 doi: 10.13433/j.cnki.1003-8728.20220183
引用本文: 冯谣,武吉梅. 斜支承导向的TPU薄膜振动特性研究[J]. 机械科学与技术,2023,42(12):2003-2010 doi: 10.13433/j.cnki.1003-8728.20220183
FENG Yao, WU Jimei. Study on Vibration Characteristics of TPU Film Guided by Inclined Support[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(12): 2003-2010. doi: 10.13433/j.cnki.1003-8728.20220183
Citation: FENG Yao, WU Jimei. Study on Vibration Characteristics of TPU Film Guided by Inclined Support[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(12): 2003-2010. doi: 10.13433/j.cnki.1003-8728.20220183

斜支承导向的TPU薄膜振动特性研究

doi: 10.13433/j.cnki.1003-8728.20220183
基金项目: 国家自然科学基金面上项目(52075435)、陕西省自然科学基金项目(2021JQ-480)、陕西省教育厅重点科学研究计划项目(20JY054)及浙江省教育厅一般科研项目(Y202353023)
详细信息
    作者简介:

    冯谣(1989−),博士研究生,研究方向为机械系统动力学,1191499902@qq.com

    通讯作者:

    武吉梅,教授,博士生导师,wujimei1@126.com

  • 中图分类号: TG156

Study on Vibration Characteristics of TPU Film Guided by Inclined Support

  • 摘要: TPU薄膜在生产过程中有斜支承导向辊对薄膜起导向传输和支承作用,此外还需要有加热烘干系统进行即时干燥,这些过程都不可避免的引起TPU薄膜的横向振动,从而影响薄膜的制备精度和质量。根据D'Alembert原理,建立具有运动速度的TPU薄膜的动力学模型及热传导方程,解耦后得到含有热弹耦合系数的运动TPU薄膜振动方程;考虑薄膜导向辊斜支承作用,建立无量纲化的斜支承下TPU薄膜的振动方程;采用微分求积法对耦合方程进行离散,研究运动TPU薄膜复频率变化对无量纲速度、斜支承角度、热弹耦合系数、张力比的影响,定量分析各参数对运动TPU薄膜振动稳定性的影响,从而提高汽车TPU薄膜的涂布精度和制备质量。
  • 图  1  陕西北人TB1350精密涂布机

    Figure  1.  Shaanxi Beiren TB1350 precision coating machine

    图  2  烘干装置内部结构

    Figure  2.  Internal structure of a drying device

    图  3  运动TPU薄膜的动力学模型

    Figure  3.  Dynamic model of TPU thin film in motion

    图  4  TPU薄膜微元等效力分析

    Figure  4.  Analysis of microelement equivalence in TPU thin film

    图  5  坐标系关系

    Figure  5.  Coordinate system relationships

    图  6  无量纲速度$ c $$ {\omega _1} $$ {\omega _2} $$ {\omega _3} $的变化曲线($ \theta = \dfrac{{5\text{π} }}{{12}} $$ {r_0} = 1 $k=0.8,$ \vartheta = 0.3 $

    Figure  6.  Variation curve of dimensionless velocity $c $ with the first three modes($ \theta = \dfrac{{5\text{π} }}{{12}} $$ {r_0} = 1 $k=0.8,$ \vartheta = 0.3 $

    图  7  无量纲速度$ c $$ {\omega _1} $$ {\omega _2} $$ {\omega _3} $的变化曲线($ \theta = \dfrac{\text{π} }{2} $$ {r_0} = 1 $$k = 0.8$$\vartheta = 0.3$

    Figure  7.  Variation curve of dimensionless velocity $c $ with the first three modes($ \theta = \dfrac{\text{π} }{2} $$ {r_0} = 1 $$k = 0.8$$\vartheta = 0.3$

    图  8  无量纲速度$ c $随无量纲复频率变化曲线($ \theta = \dfrac{{2\text{π} }}{3} $$ {r_0} = 1 $$k = 0.1$$\vartheta = 0.1$

    Figure  8.  The curve of dimensionless velocity $c $ changing with dimensionless complex frequency($ \theta = \dfrac{{2\text{π} }}{3} $$ {r_0} = 1 $$k = 0.1$$\vartheta = 0.1$

    图  9  无量纲速度$ c $随无量纲复频率变化曲线($ \theta = \dfrac{{2\text{π} }}{3} $$ {r_0} = 1 $$k = 0.1$$ \vartheta = 0.2 $

    Figure  9.  The curve of dimensionless velocity $c $ changing with dimensionless complex frequency($ \theta = \dfrac{{2\text{π} }}{3} $$ {r_0} = 1 $$k = 0.1$$ \vartheta = 0.2 $

    图  10  无量纲速度$ c $随无量纲复频率变化曲线($ \theta = \dfrac{{2\text{π} }}{3} $$ {r_0} = 1 $$k = 0.1$$ \vartheta = 0.3 $

    Figure  10.  The curve of dimensionless velocity $c $ changing with dimensionless complex frequency($ \theta = \dfrac{{2\text{π} }}{3} $$ {r_0} = 1 $$k = 0.1$$ \vartheta = 0.3 $

    图  11  无量纲速度$ c $随无量纲复频率变化曲线($ \theta = \dfrac{{2\text{π} }}{3} $$ {r_0} = 1 $$k = 0$$ \vartheta = 0.2 $

    Figure  11.  The curve of dimensionless velocity $c $ changing with dimensionless complex frequency($ \theta = \dfrac{{2\text{π} }}{3} $$ {r_0} = 1 $$k = 0$$ \vartheta = 0.2 $

    表  1  陕西北人TB1350精密涂布机基本参数

    Table  1.   Basic parameters of Shaanxi Beiren TB1350 precision coating machine

    承印物涂布机最大
    幅度/m
    涂布机最高
    速度/(m·min−1
    张力
    Tx/(N·m−1
    TPU薄膜1.25400120
    下载: 导出CSV

    表  2  TPU薄膜复频率解与文献[18]解析解比较

    Table  2.   Comparison of complex frequency solutions for TPU thin films with analytical solutions in Reference [18]

    边界条件四边简支
    1阶2阶3阶
    本文解 3.3566 4.1266 6.2693
    文献[18]解析解 3.3566 4.1266 6.2690
    下载: 导出CSV
  • [1] MOIZ A, PADHYE R, WANG X. Coating of TPU-PDMS-TMS on polycotton fabrics for versatile protection[J]. Polymers, 2017, 9(12): 660. doi: 10.3390/polym9120660
    [2] JOHN B, MOTOKUCHO S, KOJIO K, et al. Polyamide 6 fibers with superior mechanical properties: TPU coating techniques[J]. Sen'i Gakkaishi, 2009, 65(9): 236-240. doi: 10.2115/fiber.65.236
    [3] VARIAR L, MURALIDHARAN M N, NARAYANANKUTTY S K, et al. High dielectric constant, flexible and easy-processable calcium copper titanate/thermoplastic polyurethane (CCTO/TPU) composites through simple casting method[J]. Journal of Materials Science:Materials in Electronics, 2021, 32(5): 5908-5919. doi: 10.1007/s10854-021-05311-z
    [4] SHAO M Y, QING J J, WU J M. Bifurcation and chaos of the traveling membrane on oblique supports subjected to external excitation[J]. Journal of Mechanical Science and Technology, 2020, 34(11): 4513-4523. doi: 10.1007/s12206-020-1011-9
    [5] 邵明月, 王静, 武吉梅, 等. 非均匀张力作用下斜支承运动薄膜的振动特性研究[J]. 西安理工大学学报, 2021, 37(3): 367-372.

    SHAO M Y, WANG J, WU J M, et al. Vibration characteristics of a moving membrane on oblique supports subjected to non-uniform tension[J]. Journal of Xi′an University of Technology, 2021, 37(3): 367-372. (in Chinese)
    [6] GUO X X, WANG Z M, WANG Y, et al. Analysis of the coupled thermoelastic vibration for axially moving beam[J]. Journal of Sound and Vibration, 2009, 325(3): 597-608. doi: 10.1016/j.jsv.2009.03.026
    [7] GUO X X, WANG Z M, WANG Y. Dynamic stability of thermoelastic coupling moving plate subjected to follower force[J]. Applied Acoustics, 2011, 72(2-3): 100-107. doi: 10.1016/j.apacoust.2010.10.001
    [8] YANG Y Q, WANG Z M, WANG Y Q. Thermoelastic coupling vibration and stability analysis of rotating circular plate in friction clutch[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2019, 38(2): 558-573. doi: 10.1177/1461348418817465
    [9] YANG Y Q, WANG Z M. Thermoelastic coupling vibration and stability analysis of rotating annular sector plates[J]. Mathematical Problems in Engineering, 2019, 2019: 8573241.
    [10] UPADHYAY A K, SHUKLA K K. Geometrically nonlinear static and dynamic analysis of functionally graded skew plates[J]. Communications in Nonlinear Science and Numerical Simulation, 2013, 18(8): 2252-2279. doi: 10.1016/j.cnsns.2012.12.034
    [11] MALEKZADEH P, BENI A A. Free vibration of functionally graded arbitrary straight-sided quadrilateral plates in thermal environment[J]. Composite Structures, 2010, 92(11): 2758-2767. doi: 10.1016/j.compstruct.2010.04.011
    [12] TALEB O, HOUARI M S A, BESSAIM A, et al. A new plate model for vibration response of advanced composite plates in thermal environment[J]. Structural Engineering and Mechanics, 2018, 67(4): 369-383.
    [13] KUMAR A, PANDA S K, KUMAR R. Buckling behaviour of laminated composite skew plates with various boundary conditions subjected to linearly varying in-plane edge loading[J]. International Journal of Mechanical Sciences, 2015, 100: 136-144. doi: 10.1016/j.ijmecsci.2015.06.018
    [14] LAI S K, ZHOU L, ZHANG Y Y, et al. Application of the DSC-Element method to flexural vibration of skew plates with continuous and discontinuous boundaries[J]. Thin-Walled Structures, 2011, 49(9): 1080-1090. doi: 10.1016/j.tws.2011.03.019
    [15] MALEKZADEH P, KARAMI G. Polynomial and harmonic differential quadrature methods for free vibration of variable thickness thick skew plates[J]. Engineering Structures, 2005, 27(10): 1563-1574. doi: 10.1016/j.engstruct.2005.03.017
    [16] PARIDA S, MOHANTY S C. Vibration and stability analysis of functionally graded skew plate using higher order shear deformation theory[J]. International Journal of Applied and Computational Mathematics, 2018, 4(1): 22. doi: 10.1007/s40819-017-0440-3
    [17] PRAVEEN G N, REDDY J N. Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates[J]. International Journal of Solids and Structures, 1998, 35(33): 4457-4476. doi: 10.1016/S0020-7683(97)00253-9
    [18] 侯志勇, 王忠民. 轴向运动薄膜的横向振动和稳定性分析[J]. 西安理工大学学报, 2005, 21(4): 402-404.

    HOU Z Y, WANG Z M. The transverse vibration and stability analysis of an axially moving membrane[J]. Journal of Xi'an University of Technology, 2005, 21(4): 402-404. (in Chinese)
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  90
  • HTML全文浏览量:  34
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-30
  • 刊出日期:  2023-12-25

目录

    /

    返回文章
    返回