留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温合金GH901车削加工刀具磨损实验测试及理论建模

邓亚弟 李炳林 张锐 王春江 向志杨 文举

邓亚弟,李炳林,张锐, 等. 高温合金GH901车削加工刀具磨损实验测试及理论建模[J]. 机械科学与技术,2023,42(12):2079-2084 doi: 10.13433/j.cnki.1003-8728.20220181
引用本文: 邓亚弟,李炳林,张锐, 等. 高温合金GH901车削加工刀具磨损实验测试及理论建模[J]. 机械科学与技术,2023,42(12):2079-2084 doi: 10.13433/j.cnki.1003-8728.20220181
DENG Yadi, LI Binglin, ZHANG Rui, WANG Chunjiang, XIANG Zhiyang, WEN Ju. Experimental Testing and Theoretical Modeling of Tool Wear in Turning GH901 Superalloy[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(12): 2079-2084. doi: 10.13433/j.cnki.1003-8728.20220181
Citation: DENG Yadi, LI Binglin, ZHANG Rui, WANG Chunjiang, XIANG Zhiyang, WEN Ju. Experimental Testing and Theoretical Modeling of Tool Wear in Turning GH901 Superalloy[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(12): 2079-2084. doi: 10.13433/j.cnki.1003-8728.20220181

高温合金GH901车削加工刀具磨损实验测试及理论建模

doi: 10.13433/j.cnki.1003-8728.20220181
基金项目: 四川省区域创新合作项目(2022YFQ0016)与德阳市产学研项目(2020CKL006)
详细信息
    作者简介:

    邓亚弟(1985−),高级工程师,研究方向为难加工材料加工理论与工艺技术,13981085083@163.com

    通讯作者:

    李炳林,副研究员,硕士生导师,libinglin@swpu.edu.cn

  • 中图分类号: TG501.1

Experimental Testing and Theoretical Modeling of Tool Wear in Turning GH901 Superalloy

  • 摘要: 用A、B和C这3种不同型号的刀具,采用40 m/min和60 m/min两种切削速度对高温合金GH901进行了车削实验,通过观察刀具后刀面磨损状态,建立了各类型刀具的主后刀面磨损曲线,并根据刀具磨损情况和磨损曲线对刀具类型进行了优选,最后利用典型磨损曲线建立了刀具磨损预测模型。实验与模型预测结果的最大均方根误差和最大平均绝对误差分别为0.043 49,0.039 43 mm,误差偏小证明了该预测模型的有效性。综合车削性能由高到低依次是A、B和C刀具。切屑类型以长环形螺旋切屑为主,切削速度越高,刀具寿命明显降低。
  • 图  1  3种类型刀具

    Figure  1.  Three types of cutting tools

    图  2  A型刀具磨损曲线

    Figure  2.  A- types tool wear curve

    图  3  A型刀具40 m/min和60 m/min最终磨损状态

    Figure  3.  The final wear condition of A-type tool at the cutting speed of 40 m/min and 60 m/min

    图  4  B型刀具磨损曲线

    Figure  4.  B-type tool wear curve

    图  5  B型刀具40 m/min和60 m/min最终磨损状态

    Figure  5.  The final wear condition of B-type tool at the cutting speed of 40 m/min and 60 m/min

    图  6  C型刀具磨损曲线

    Figure  6.  C-type tool wear curve

    图  7  C型刀具40 m/min和60 m/min最终磨损状态

    Figure  7.  The final wear condition of C-type tool at the cutting speed of 40 m/min and 60 m/min

    图  8  Vc = 40 m/min时,A,B,C型刀具磨损曲线

    Figure  8.  Wear curve of A, B, C type tool when Vc = 40 m/min

    图  9  Vc = 60 m/min,A,B,C型刀具磨损曲线

    Figure  9.  Wear curve of A, B, C type tool when Vc = 60 m/min

    图  10  A,B,C型刀具在不同切削速度下的刀具寿命

    Figure  10.  The tool life of A, B, C types under different cutting speeds

    图  11  长环形螺旋切屑

    Figure  11.  The long helical ring chip

    图  12  刀具磨损曲线

    Figure  12.  The tool wear curve

    图  13  A刀具预测与实验结果对比

    Figure  13.  Comparison of the prediction of tool A with experimental results

    图  14  B刀具预测与实验结果对比

    Figure  14.  Comparison of The prediction of tool B withexperimental results

    图  15  C刀具预测与实验结果对比

    Figure  15.  Comparison of the prediction of tool C with experimental results

    表  1  高温合金GH901各元素的质量分数

    Table  1.   Chemical composition of GH901 superalloy %

    CSiCrNiTiAlPBCuCoMoFe
    0.0310.04512.4342.23.060.220.0150.0150.0030.0156.0余量
    下载: 导出CSV

    表  2  GH901高温合金的力学性能(室温下)

    Table  2.   Mechanical properties of GH901 superalloy at room temperature

    抗拉强度屈服强度伸长率收缩率
    1203 MPa892 MPa22%41.5%
    下载: 导出CSV

    表  3  3种类型刀具的磨损预测模型参数值

    Table  3.   Parameter values of wear prediction model for three types of tools

    模型参数A刀具B刀具C刀具
    C0.06410.06820.0782
    D0.3520.3730.532
    K0.000000330.000000630.00000043
    下载: 导出CSV

    表  4  磨损预测模型误差值

    Table  4.   The error value of wear prediction model

    刀具类型pmae/mmprmse
    A0.028970.03334
    B0.024000.02782
    C0.039430.04349
    下载: 导出CSV
  • [1] 刘建伟, 李寒荣, 万方前. 汽轮机高温合金GH901材质阀杆车削工艺设计[J]. 机械研究与应用, 2020, 33(4): 177-179.

    LIU J W, LI H R, WAN F Q. Turning technology design for the steam turbine superalloy GH901 valve turbine[J]. Mechanical Research & Application, 2020, 33(4): 177-179. (in Chinese)
    [2] 高奇, 郭光岩, 李文博. 微铣削单晶高温合金刀具磨损实验研究[J]. 现代制造工程, 2021(4): 99-103.

    GAO Q, GUO G Y, LI W B. Experimental study on tool wear of single crystal superalloy in micro-milling[J]. Modern Manufacturing Engineering, 2021(4): 99-103. (in Chinese)
    [3] 韩变枝, 刘公雨, 陈明, 等. 高效铣削钛合金涂层硬质合金刀具优选及磨损试验研究[J]. 制造技术与机床, 2018(8): 152-157.

    HAN B Z, LIU G G, CHEN M, et al. Experimental study on wear and optimization of coated carbide tools for high-efficiency cutting titanium alloys[J]. Manufacturing Technology & Machine Tool, 2018(8): 152-157. (in Chinese)
    [4] 柯清禅, 孙剑飞, 王天明. 硬质合金涂层刀具车削钛合金TA15的磨损研究及切削参数优选[J]. 工具技术, 2017, 51(12): 23-28.

    KE Q C, SUN J F, WANG T M. Study on tool wear and cutting parameters optimization during turning work of Titanium Alloy TA15 with coated carbide tool[J]. Tool Engineering, 2017, 51(12): 23-28. (in Chinese)
    [5] 严复钢, 吕亚飞, 李艳国, 等. 硬质合金刀具高温磨损过程机理分析[J]. 工具技术, 2017, 51(12): 22-27.

    YAN F G, LV Y F, LI Y G, et al. Analysis of high temperature wear process mechanism of cemented carbide tool[J]. Tool Engineering, 2017, 51(12): 22-27. (in Chinese)
    [6] LIU E L, AN W Z, XU Z C, et al. Experimental study of cutting-parameter and tool life reliability optimization in Inconel 625 machining based on wear map approach[J]. Journal of Manufacturing Processes, 2020, 53: 34-42. doi: 10.1016/j.jmapro.2020.02.006
    [7] 常昊, 马廉洁, 万学文, 等. 车削可加工陶瓷刀具磨损模型研究[J]. 机械科学与技术, 2020, 39(1): 83-87.

    CHANG H, MA L J, WAN X W, et al. Study on wear model for cutting tools of machinable ceramic[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(1): 83-87. (in Chinese)
    [8] LAGARDE Q, WAGNER V, DESSEIN G, et al. Effect of temperature on tool wear during milling of Ti64[J]. Journal of Manufacturing Science and Engineering, 2021, 143(7): 071007. doi: 10.1115/1.4049847
    [9] HAN D Y, YU J S, TANG D Y. An HDP-HMM based approach for tool wear estimation and tool life prediction[J]. Quality Engineering, 2021, 33(2): 208-220. doi: 10.1080/08982112.2020.1813760
    [10] 董靖川, 徐明达, 王太勇, 等. 分布式卷积神经网络在刀具磨损量预测中的应用[J]. 机械科学与技术, 2020, 39(3): 329-335.

    DONG J C, XU M D, WANG T Y, et al. Application of distributed convolutional neural network in wear prediction of tool[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(3): 329-335. (in Chinese)
    [11] 何彦, 凌俊杰, 王禹林, 等. 基于长短时记忆卷积神经网络的刀具磨损在线监测模型[J]. 中国机械工程, 2020, 31(16): 1959-1967.

    HE Y, LING J J, WANG Y L, et al. In-process tool wear monitoring model based on LSTM-CNN[J]. China Mechanical Engineering, 2020, 31(16): 1959-1967. (in Chinese)
    [12] 肖鹏飞, 张超勇, 罗敏, 等. 基于自适应动态无偏最小二乘支持向量机的刀具磨损预测建模[J]. 中国机械工程, 2018, 29(7): 842-849.

    XIAO P F, ZHANG C Y, LUO M, et al. Modeling method for tool wear prediction based on ADNLSSVM[J]. China Mechanical Engineering, 2018, 29(7): 842-849. (in Chinese)
    [13] 袁军, 刘丽冰, 张艳蕊, 等. 刀具磨损状况的检测方法研究综述[J]. 现代制造工程, 2021(3): 152-160.

    YUAN J, LIU L B, ZHANG Y R, et al. Survey of research on detection methods for tool wear condition[J]. Modern Manufacturing Engineering, 2021(3): 152-160. (in Chinese)
    [14] 杨树宝, 倪宏超, 朱国辉. TC4钛合金切削刀具磨损对切削过程影响的研究[J]. 机械科学与技术, 2014, 33(8): 1183-1185.

    YANG S B, NI H C, ZHU G H. Effect of the tool wear on the cutting process of Ti6Al4V titanium alloy[J]. Mechanical Science and Technology for Aerospace Engineering, 2014, 33(8): 1183-1185. (in Chinese)
    [15] ZHANG Y, ZHU K P, DUAN X Y, et al. Tool wear estimation and life prognostics in milling: model extension and generalization[J]. Mechanical Systems and Signal Processing, 2021, 155: 107617. doi: 10.1016/j.ymssp.2021.107617
    [16] ZHU K P, ZHANG Y. A generic tool wear model and its application to force modeling and wear monitoring in high speed milling[J]. Mechanical Systems and Signal Processing, 2019, 115: 147-161. doi: 10.1016/j.ymssp.2018.05.045
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  85
  • HTML全文浏览量:  34
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-25
  • 刊出日期:  2023-12-25

目录

    /

    返回文章
    返回