留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

矩阵算子法构建切削滑移线场的分析

周里群 胡中翔 刘毅 王俊文 汪振南

周里群,胡中翔,刘毅, 等. 矩阵算子法构建切削滑移线场的分析[J]. 机械科学与技术,2023,42(12):2072-2078 doi: 10.13433/j.cnki.1003-8728.20220177
引用本文: 周里群,胡中翔,刘毅, 等. 矩阵算子法构建切削滑移线场的分析[J]. 机械科学与技术,2023,42(12):2072-2078 doi: 10.13433/j.cnki.1003-8728.20220177
ZHOU Liqun, HU Zhongxiang, LIU Yi, WANG Junwen, WANG Zhennan. Analysis of Cutting Slip-line Field Constructed by Using Matrix-operator Method[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(12): 2072-2078. doi: 10.13433/j.cnki.1003-8728.20220177
Citation: ZHOU Liqun, HU Zhongxiang, LIU Yi, WANG Junwen, WANG Zhennan. Analysis of Cutting Slip-line Field Constructed by Using Matrix-operator Method[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(12): 2072-2078. doi: 10.13433/j.cnki.1003-8728.20220177

矩阵算子法构建切削滑移线场的分析

doi: 10.13433/j.cnki.1003-8728.20220177
基金项目: 湖南省自然科学湘潭联合基金项目(2021JJ50127)
详细信息
    作者简介:

    周里群(1965−),教授,硕士生导师,研究方向为先进制造技术,johnzlq@163.com

  • 中图分类号: TG501.3

Analysis of Cutting Slip-line Field Constructed by Using Matrix-operator Method

  • 摘要: 刀具与切屑接触的摩擦因数呈不均匀分布增加了正交切削分析的难度,缺少一个完善的解析模型。针对于此,本文采用矩阵算子法构建了一种考虑在刀−屑接触面上变摩擦因数的滑移线场。通过Oxley的剪切切削理论找出工件表面材料塑性剪切变形的位置,为滑移线场的添加几何约束条件,从而求解滑移线参数。根据滑移线场,导出刀−屑接触长度,推算出切削力的解析式。模型计算结果与GH4169切削有限元仿真结果对比发现:刀−屑接触长度误差在9.8%内,两者的切削力在变化趋势上一致且数值上相近,验证了滑移线场的准确性。上述研究成果为变摩擦因数的正交切削分析刀−屑接触长度和切削力提供了理论方法。
  • 图  1  切削滑移线场

    Figure  1.  The cutting slip-line field model

    图  2  滑移线场速矢图

    Figure  2.  Holograph for the slip-line field model

    图  3  滑移线场的约束条件

    Figure  3.  Constraints for the slip line field

    图  4  K点静水压力

    Figure  4.  K-point hydrostatic pressure

    图  5  K点受力分析

    Figure  5.  K-point force analysis

    图  6  Mises应力云图

    Figure  6.  Mises stress nephogram

    图  7  仿真切削力

    Figure  7.  Simulated cutting force

    图  8  不同切削深度下刀−屑接触长度对比

    Figure  8.  Comparison of tool-chip contact length under different cutting depths

    图  9  不同刀具前角下刀−屑接触长度对比

    Figure  9.  Comparison of tool-chip contact length under different tool rake angles

    图  10  不同切削深度下X向切削力对比

    Figure  10.  Comparison of X-direction cutting forces at different cutting depths

    图  11  不同切削深度下Y向切削力对比

    Figure  11.  Comparison of Y-direction cutting forces at different cutting depths

    图  12  不同刀具前角下X向切削力对比

    Figure  12.  Comparison of X-direction cutting forces under different tool rake angles

    图  13  不同刀具前角下Y向切削力对比

    Figure  13.  Comparison of Y-direction cutting forces under different tool rake angles

    表  1  GH4169J-C本构模型参数

    Table  1.   GH4169 J-C constitutive model parameters

    A/MPaB/MPaCmn
    9639370.0221.30.333
    下载: 导出CSV

    表  2  仿真加工参数表

    Table  2.   Processing parameters for simulation

    组数切削深度tu/mm刀具前角φ/(°)切削速度v/(m·min−1
    10.115100
    20.215100
    30.315100
    40.415100
    50.25100
    60.210100
    70.220100
    下载: 导出CSV
  • [1] 史红艳, 赵先锋, 姜雪婷. 滑移线场理论在正交切削过程中的研究现状[J]. 华南理工大学学报(自然科学版), 2019, 47(1): 14-31.

    SHI Y H, ZHAO X F, JIANG X T. Current research on the application of slip line field theory in the orthogonal cutting process[J]. Journal of South China University of Technology (Natural Science Edition), 2019, 47(1): 14-31. (in Chinese)
    [2] HU C, ZHUANG K, WENG J, et al. Cutting temperature prediction in negative-rake-angle machining with chamfered insert based on a modified slip-line field model[J]. International Journal of Mechanical Sciences, 2020, 167: 105273. doi: 10.1016/j.ijmecsci.2019.105273
    [3] HU C, ZHUANG K J, TANG Y W, et al. Three-dimensional temperature prediction in cylindrical turning with large-chamfer insert based on a modified slip-line field approach[J]. Chinese Journal of Aeronautics, 2021, 34(10): 265-281. doi: 10.1016/j.cja.2020.06.011
    [4] UYSAL A, JAWAHIR I S. A slip-line model for serrated chip formation in machining of stainless steel and validation[J]. The International Journal of Advanced Manufacturing Technology, 2019, 101(9): 2449-2464.
    [5] UYSAL A, JAWAHIR I S. Validation of the slip-line model for serrated chip formation in orthogonal turning under dry and MQL conditions[J]. Procedia CIRP, 2019, 82: 124-129. doi: 10.1016/j.procir.2019.04.006
    [6] HAO M H, XU D C, WEI F Q, et al. Quantitative analysis of frictional behavior of cupronickel B10 at the tool-chip interface during dry cutting[J]. Tribology International, 2018, 118: 163-169. doi: 10.1016/j.triboint.2017.09.033
    [7] DENGUIR L A, OUTEIRO J C, RECH J, et al. Friction model for tool/work material contact applied to surface integrity prediction in orthogonal cutting simulation[J]. Procedia CIRP, 2017, 58: 578-583. doi: 10.1016/j.procir.2017.03.229
    [8] MANE S, JOSHI S S, KARAGADDE S, et al. Modeling of variable friction and heat partition ratio at the chip-tool interface during orthogonal cutting of Ti-6Al-4V[J]. Journal of Manufacturing Processes, 2020, 55: 254-267. doi: 10.1016/j.jmapro.2020.03.035
    [9] 谢娜, 岳彩旭, 李晓晨, 等. 考虑接触应力和温度的刀-屑摩擦因数建模[J]. 机械科学与技术, 2022, 41(6): 821-826. doi: 10.13433/j.cnki.1003-8728.20200396

    XIE N, YUE C X, LI X C, et al. Tool-chip friction coefficient modeling by considering contact stress and temperature[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(6): 821-826. (in Chinese) doi: 10.13433/j.cnki.1003-8728.20200396
    [10] FANG N, JAWAHIR I S, OXLEY P L B. A universal slip-line model with non-unique solutions for machining with curled chip formation and a restricted contact tool[J]. International Journal of Mechanical Sciences, 2001, 43(2): 557-580. doi: 10.1016/S0020-7403(99)00117-4
    [11] GREEN A P. On the use of hodographs in problems of plane plastic strain[J]. Journal of the Mechanics and Physics of Solids, 1954, 2(2): 73-80. doi: 10.1016/0022-5096(54)90001-0
    [12] DEWHURST P, COLLINS I F. A matrix technique for constructing slip‐line field solutions to a class of plane strain plasticity problems[J]. International Journal for Numerical Methods in Engineering, 1973, 7(3): 357-378. doi: 10.1002/nme.1620070312
    [13] 章顺虎. 塑性成型力学原理[M]. 北京: 冶金工业出版社, 2016.

    ZHANG S H. Mechanical principle of plastic forming[M]. Beijing: Metallurgical Industry Press, 2016. (in Chinese)
    [14] DEWHURST P. A general matrix operator for linear boundary value problems in slip‐line field theory[J]. International Journal for Numerical Methods in Engineering, 1985, 21(1): 169-182. doi: 10.1002/nme.1620210114
    [15] BOWDEN F P, TABOR D. The friction and lubrication of solids[M]. Oxford: Clarendon Press, 1986.
    [16] ATKINS T. Prediction of sticking and sliding lengths on the rake faces of tools using cutting forces[J]. International Journal of Mechanical Sciences, 2015, 91: 33-45. doi: 10.1016/j.ijmecsci.2014.06.004
    [17] WANG X Y, HUANG C Z, ZOU B, et al. Dynamic behavior and a modified Johnson-cook constitutive model of Inconel 718 at high strain rate and elevated temperature[J]. Materials Science and Engineering:A, 2013, 580: 385-390. doi: 10.1016/j.msea.2013.05.062
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  74
  • HTML全文浏览量:  17
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-16
  • 刊出日期:  2023-12-25

目录

    /

    返回文章
    返回