留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种IPRRT的机械臂三维路径避障算法

钟华庚 丁健 郭永欢 罗高生 王芳 冯玮

钟华庚,丁健,郭永欢, 等. 一种IPRRT的机械臂三维路径避障算法[J]. 机械科学与技术,2023,42(12):2021-2029 doi: 10.13433/j.cnki.1003-8728.20220176
引用本文: 钟华庚,丁健,郭永欢, 等. 一种IPRRT的机械臂三维路径避障算法[J]. 机械科学与技术,2023,42(12):2021-2029 doi: 10.13433/j.cnki.1003-8728.20220176
ZHONG Huageng, DING Jian, GUO Yonghuan, LUO Gaosheng, WANG Fang, FENG Wei. An Improved Rapidly-exploring Random Tree Algorithm for Manipulator's 3D Path Obstacle Avoidance[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(12): 2021-2029. doi: 10.13433/j.cnki.1003-8728.20220176
Citation: ZHONG Huageng, DING Jian, GUO Yonghuan, LUO Gaosheng, WANG Fang, FENG Wei. An Improved Rapidly-exploring Random Tree Algorithm for Manipulator's 3D Path Obstacle Avoidance[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(12): 2021-2029. doi: 10.13433/j.cnki.1003-8728.20220176

一种IPRRT的机械臂三维路径避障算法

doi: 10.13433/j.cnki.1003-8728.20220176
基金项目: 国家自然科学基金面上项目(52071203)、上海市科技攻关计划项目(20dz1206500)、上海市科委自然科学基金面上项目(19ZR1422700)及上海市工程技术研究中心建设计划(19DZ2254800)
详细信息
    作者简介:

    钟华庚(1996−),硕士研究生,研究方向为路径规划,基于ROS系统的水下机器人控制研究,1142790610@qq.com

    通讯作者:

    罗高生,讲师,gsluo@shou.edu.cn

  • 中图分类号: TP241.3

An Improved Rapidly-exploring Random Tree Algorithm for Manipulator's 3D Path Obstacle Avoidance

  • 摘要: 标准RRT(Rapidly exploring random tree)算法进行路径规划时,存在规划时间长、规划路径质量差的问题。针对以上问题,提出一种IPRRT算法(Improved RRT algorithm),首先通过重选父节点环节策略剔除冗余路段,区域排斥机制剔除冗余节点,缩短规划路径与规划时间;其次采用线段转角限位与评估函数提升路径质量,最后采用三次Hermite曲线对路径进行平滑处理;通过对深海机械臂进行仿真实验,验证了IPRRT算法的有效性。
  • 图  1  深海四自由度机械臂

    Figure  1.  Deep-sea four-degrees-of-freedom robotic arm

    图  2  深海四自由度机械手简化结构及其D-H坐标系

    Figure  2.  Simplified structure of the deep-sea four-degrees-of-freedom robotic hand and its D-H coordinate system

    图  3  机械臂关节与连杆简化过程

    Figure  3.  Simplification process of the robotic arm's joints and links

    图  4  简化机械臂与外部障碍物碰撞情况

    Figure  4.  Collision between simplified robotic arm and external obstacles

    图  5  Xnew重选父节点的过程

    Figure  5.  The process of re-selecting parent nodes for Xnew

    图  6  区域排斥机制

    Figure  6.  Regional exclusion mechanism

    图  7  线段转角限位策略

    Figure  7.  Line segment corner limitation strategy

    图  8  平滑度计算的路径段

    Figure  8.  Path segment for smoothness calculation

    图  9  三次Hermite曲线平滑处理

    Figure  9.  Smoothing process using the cubic Hermite curve

    图  10  5种算法性能展示以及后处理效果(二维)

    Figure  10.  Performance display of five algorithms and post-processing effects (2D)

    图  11  5种算法性能展示以及后处理效果(三维)

    Figure  11.  Performance display of five algorithms and post-processing effects (3D)

    图  12  ARM 5EMINI机械臂水下工作

    Figure  12.  ARM 5EMINI robotic arm working underwater

    图  13  无人潜水器(马里亚纳海沟)海试

    Figure  13.  Unmanned submersible sea trial in the Mariana trench

    图  14  改进算法避障性能测试

    Figure  14.  Obstacle avoidance performance test of the improved algorithm

    表  1  深海机械手连杆参数表

    Table  1.   Deep-sea robotic hand link parameters

    $ i $$ {\alpha _{i - 1}} $$ {a_{i - 1}} $$ d_i $$ \theta_{i} $
    1000$ {\mathop q\limits^ * }_1 $
    2−90°$a_{1}=0.061 \mathrm{ ~ m}$0$ {\mathop q\limits^ * }_2 $
    30$ a_{2}=0.315 \mathrm{ ~ m} $0$ {\mathop q\limits^ * }_3 $
    490°00$ {\mathop q\limits^ * }_4 $
    500${d_4} = 0.257 \mathrm{ ~ m}$0
    下载: 导出CSV
    Regional exclusion strategy
    1:Xrand ← RANDOM_FUCTION();
    2:if OBSTACLE_COLLISION(XnearXnew
    3:Xnear ←NEAREST_TREE (TXrand):
    4:if $ {({X_1} - {X_2})^2} + {({Y_1} - {Y_2})^2} > {\psi ^2} $
    5: return Xrand
    6: else
    7: return Null
    8: end if
    9: else
    10: return Null
    11:end if
    下载: 导出CSV

    表  2  5种算法100次仿真实验数据(二维)

    Table  2.   Data from 100 simulations for five algorithms (2D)

    算法类型规划时间/s节点总数/个路径节点数/个路径规划长度/cm$\alpha_{\rm{ Max}} > {60^ \circ }$/次
    算法1(标准RRT) 10.71 184.80 23.02 450.54 100
    算法2 2.54 54.21 20.95 409.16 95
    算法3 2.05 45.23 21.09 414.58 97
    IPRRT算法 0.95 21.28 5.89 357.58 0
    RRT*算法 14.43 434.84 17.94 364.10 34
    注:$\alpha_{\rm{ max}} > {60^ \circ }$/次表示为100次路径规划中,单次路径线段转角最大值大于60°的次数。
    下载: 导出CSV

    表  3  5种算法100次仿真实验数据(三维)

    Table  3.   Data from 100 simulations for five algorithms (3D)

    算法类型规划时间/s节点总数/个路径节点数/个路径规划长度/cm$\alpha_{\rm{max}} > {60^ \circ }$/次
    算法1(标准RRT) 81.16 1352.90 32 628.38 100
    算法2 4.32 70.29 26.25 515.23 99
    算法3 3.79 57.06 26.04 510.40 100
    IPRRT算法 1.62 21.56 4.94 440.62 0
    RRT*算法 412.21 4092.62 21.32 457.64 52
    下载: 导出CSV

    表  4  不同算法路径平滑度

    Table  4.   Path smoothness of different algorithms

    标准RRT算法RRT*算法IPRRT算法
    326.2197.8523.94
    下载: 导出CSV

    表  5  深海机械臂规划数据

    Table  5.   Planning data for deep-sea robotic arm

    算法类型规划平均时间/s规划成功次数成功率/%
    标准RRT(地图1 0.351 18 90
    IPRRT 0.017 20 100
    标准RRT(地图2 0.288 19 95
    IPRRT 0.0139 20 100
    下载: 导出CSV
  • [1] SIVČEV S, COLEMAN J, OMERDIĆ E, et al. Underwater manipulators: a review[J]. Ocean Engineering, 2018, 163: 431-450. doi: 10.1016/j.oceaneng.2018.06.018
    [2] CAPOCCI R, OMERDIC E, DOOLY G, et al. Fault-tolerant control for ROVs using control reallocation and power isolation[J]. Journal of Marine Science and Engineering, 2018, 6(2): 40. doi: 10.3390/jmse6020040
    [3] TAHIR Z, QURESHI A H, AYAZ Y, et al. Potentially guided bidirectionalized RRT* for fast optimal path planning in cluttered environments[J]. Robotics and Autonomous Systems, 2018, 108: 13-27. doi: 10.1016/j.robot.2018.06.013
    [4] PI R, YOUAKIM D, CIESLAK P, et al. Multi-representation multi-heuristic A* motion planning for a dual-arm underwater vehicle manipulation system[J]. IFAC-PapersOnLine, 2019, 52(21): 205-210. doi: 10.1016/j.ifacol.2019.12.308
    [5] QING G, ZHENG Z, YUE X. Path-planning of automated guided vehicle based on improved Dijkstra algorithm[C]//2017 29th Chinese Control and Decision Conference (CCDC). Chongqing: IEEE, 2017: 7138-7143.
    [6] MARON O, LOZANO-PEREZ T. Visible decomposition: real-time path planning in large planar environments[R]. Cambridge: Massachusetts Institute of Technology, 1996.
    [7] BESCHI M, MUTTI S, NICOLA G, et al. Optimal robot motion planning of redundant robots in machining and additive manufacturing applications[J]. Electronics, 2019, 8(12): 1437. doi: 10.3390/electronics8121437
    [8] MAO L, JI X M, QIN F. A robot obstacle avoidance method based on improved genetic algorithm[C]//2018 11th International Conference on Intelligent Computation Technology and Automation (ICICTA). Changsha: IEEE, 2018: 327-331.
    [9] LI G Q, LIANG D W, ZHAO Q Y, et al. Improved artificial fish swarm algorithm approach to robot path planning problems[C]//2020 5th International Conference on Automation, Control and Robotics Engineering (CACRE). Dalian: IEEE, 2020: 71-75.
    [10] ALOMARI A, PHILLIPS W, ASLAM N, et al. Dynamic fuzzy-logic based path planning for mobility-assisted localization in wireless sensor networks[J]. Sensors, 2017, 17(8): 1904. doi: 10.3390/s17081904
    [11] LI Y, MA T, CHEN P Y, et al. Autonomous underwater vehicle optimal path planning method for seabed terrain matching navigation[J]. Ocean Engineering, 2017, 133: 107-115. doi: 10.1016/j.oceaneng.2017.01.026
    [12] KANNAN A, GUPTA P, TIWARI R, et al. Robot motion planning using adaptive hybrid sampling in probabilistic roadmaps[J]. Electronics, 2016, 5(2): 16.
    [13] KARAMAN S, FRAZZOLI E. Sampling-based algorithms for optimal motion planning[J]. The International Journal of Robotics Research, 2011, 30(7): 846-894. doi: 10.1177/0278364911406761
    [14] JAILLET L, CORTÉS J, SIMÉON T. Sampling-based path planning on configuration-space costmaps[J]. IEEE Transactions on Robotics, 2010, 26(4): 635-646. doi: 10.1109/TRO.2010.2049527
    [15] 周星合. 基于作业任务的ROV双臂运动规划方法的研究[D]. 哈尔滨: 哈尔滨工程大学, 2017.

    ZHOU X H. Research on ROV dual-arm motion planning method based on job task[D]. Harbin: Harbin Engineering University, 2017. (in Chinese)
    [16] YOUAKIM D, RIDAO P. Motion planning survey for autonomous mobile manipulators underwater manipulator case study[J]. Robotics and Autonomous Systems, 2018, 107: 20-44. doi: 10.1016/j.robot.2018.05.006
    [17] WANG J K, MENG M Q H, KHATIB O. EB-RRT: optimal motion planning for mobile robots[J]. IEEE Transactions on Automation Science and Engineering, 2020, 17(4): 2063-2073. doi: 10.1109/TASE.2020.2987397
    [18] 张立彬, 林后凯, 谭大鹏. 基于栅格空间的自适应GB_RRT*机械臂路径规划[J]. 计算机集成制造系统, 2022, 28(6): 1638-1649. doi: 10.13196/j.cims.2022.06.004

    ZHANG L B, LIN H K, TAN D P. Manipulator path planning based on grid space-based adaptive goal bias rapidly exploring random tree star[J]. Computer Integrated Manufacturing Systems, 2022, 28(6): 1638-1649. (in Chinese) doi: 10.13196/j.cims.2022.06.004
    [19] KANG J G, LIM D W, CHOI Y S, et al. Improved RRT-Connect algorithm based on triangular inequality for robot path planning[J]. Sensors, 2021, 21(2): 333. doi: 10.3390/s21020333
    [20] 马冀桐, 王毅, 何宇, 等. 基于构型空间先验知识引导点的柑橘采摘机械臂运动规划[J]. 农业工程学报, 2019, 35(8): 100-108.

    MA J T, WANG Y, HE Y, et al. Motion planning of citrus harvesting manipulator based on informed guidance point of configuration space[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(8): 100-108. (in Chinese)
    [21] 祁若龙, 周维佳, 王铁军. 一种基于遗传算法的空间机械臂避障轨迹规划方法[J]. 机器人, 2014, 36(3): 263-270.

    QI R L, ZHOU W J, WANG T J. An obstacle avoidance trajectory planning scheme for space manipulators based on genetic algorithm[J]. Robot, 2014, 36(3): 263-270. (in Chinese)
  • 加载中
图(14) / 表(6)
计量
  • 文章访问数:  116
  • HTML全文浏览量:  50
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-10
  • 刊出日期:  2023-12-25

目录

    /

    返回文章
    返回