留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

漂浮基机械臂系统耦合动力学与解耦控制方法

陈正仓 贾峰

陈正仓,贾峰. 漂浮基机械臂系统耦合动力学与解耦控制方法[J]. 机械科学与技术,2023,42(12):1977-1985 doi: 10.13433/j.cnki.1003-8728.20220175
引用本文: 陈正仓,贾峰. 漂浮基机械臂系统耦合动力学与解耦控制方法[J]. 机械科学与技术,2023,42(12):1977-1985 doi: 10.13433/j.cnki.1003-8728.20220175
CHEN Zhengcang, JIA Feng. Coupling Dynamics and Coordinated Control Method of Space Floating Manipulator System[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(12): 1977-1985. doi: 10.13433/j.cnki.1003-8728.20220175
Citation: CHEN Zhengcang, JIA Feng. Coupling Dynamics and Coordinated Control Method of Space Floating Manipulator System[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(12): 1977-1985. doi: 10.13433/j.cnki.1003-8728.20220175

漂浮基机械臂系统耦合动力学与解耦控制方法

doi: 10.13433/j.cnki.1003-8728.20220175
基金项目: 国家自然科学基金项目(52275005,52105085)与陕西省自然科学基金项目(2022JQ-342)
详细信息
    作者简介:

    陈正仓(1989−),工程师,博士研究生,研究方向为移动机器人耦合动力学与控制技术,chenzhc8905@chd.edu.cn

    通讯作者:

    贾峰,讲师,博士研究生,jiafeng@chd.edu.cn

  • 中图分类号: TH24

Coupling Dynamics and Coordinated Control Method of Space Floating Manipulator System

  • 摘要: 在执行空间任务过程中,漂浮基机械臂系统内部的动力学耦合现象使得基体姿态调整和机械臂末端定位与控制问题变得更加复杂。综合考虑多种空间漂浮基机械臂系统共性特征,关注机械臂与基体耦合规律,建立统一的耦合动力学模型,并利用整个系统的非完整性特征和耦合特点,对特定系统设计解耦控制规律。通过控制机械臂关节主动运动实现基体位姿可控和机械臂末端任务不受制约的目的。结果表明,通过合理设置控制参数,在解空间存在的情况下,能够达到漂浮基体与机械臂末端协调运动的目的。
  • 图  1  可移动基机械臂系统的多种类型[12, 21]

    Figure  1.  Various types of mobile base manipulator system

    图  2  系统简化示意图

    Figure  2.  Simplified diagram of a manipulator system

    图  3  控制流程图设计

    Figure  3.  Control design procedure

    图  4  单臂浮动基空间机械臂模型

    Figure  4.  Model of single arm floating base space manipulator

    图  5  漂浮基6-DOF机械臂系统关节零位构型

    Figure  5.  Initial configuration of a 6-DOF SBMS

    图  7  关节角轨迹跟踪曲线

    Figure  7.  Joint angle trajectory tracking curve

    图  8  跟踪误差曲线

    Figure  8.  Tracking error curve

    图  9  广义惯量变化趋势图

    Figure  9.  Generalized inertia variation

    图  6  系统仿真流程

    Figure  6.  The simulation procedures flowchart of the system

    图  10  系统解耦仿真流程图

    Figure  10.  Decoupling process simulation flow chart

    图  11  关节空间轨迹曲线

    Figure  11.  The joint paths

    图  12  关节力矩曲线

    Figure  12.  The torque curves of joints

    图  13  耦合度变化曲线

    Figure  13.  Coupled force curves

    图  14  系统构型与姿态变化简图

    Figure  14.  Configuration and attitude change

    表  1  运动学参数及定义

    Table  1.   Kinematic parameters and their definitions

    参数定义
    NN=knn为机械臂关节,k为机械臂个数)
    ${\boldsymbol{\phi }}\in {\Re ^n}$关节角变量
    ${{\boldsymbol{r}}_i} \in {\Re ^3}$连杆i位置矢量
    ${{\boldsymbol{a}}_i},{{\boldsymbol{b}}_i} \in {\Re ^3}$质心i指向关节i的方向向量
    ${{\boldsymbol{k}}_i} \in {\Re ^3}$关节i的单位方向向量
    ${{\boldsymbol{v}}_i},{{\boldsymbol{\omega}}_i} \in {\Re ^3}$连杆i的质心速度和角速度
    ${{\boldsymbol{V}}_i} = {\left[ {\dot {\boldsymbol{r}}_i^{\rm{T}},{\boldsymbol{\omega}}_i^{\rm{T}}} \right]^{\rm{T}}} \in {\Re ^{{\text{6}} \times {\text{1}}}}$连杆i的速度旋量
    下载: 导出CSV

    表  2  动力学相关参数及定义

    Table  2.   Notations of dynamic parameters and their definitions

    参数定义
    ${m_i},{I_i}$连杆i的质量和惯性张量
    ${{\boldsymbol{X}}_P} \in {\Re ^{{\text{6}} \times {\text{1}}}}$浮动基体位姿旋量
    ${\dot {\boldsymbol{x}}_P} = {\left[ {{\boldsymbol{v}}_0^{\text{T}},{\boldsymbol{\omega}}_0^{\text{T}}} \right]^{\rm{T}}} \in {\Re ^{6 \times 1}}$浮动基体速度旋量
    ${{\boldsymbol{H}}_P} \in {\Re ^{{{6 \times 6}}}}$基体参照自身的惯性张量
    ${{\boldsymbol{H}}_\phi } \in {\Re ^{n \times n}}$机械臂参照自身的惯性张量
    ${{\boldsymbol{H}}_{P\phi }} \in {\Re ^{{\text{6}} \times n}}$基体参照机械臂的耦合惯性张量
    ${{\boldsymbol{c}}_P} \in {\Re ^{{{6 \times 6}}}}$基体的非线性速度相关项
    ${{\boldsymbol{c}}_\phi } \in {\Re ^{n \times n}}$机械臂的非线性速度相关项
    ${{\boldsymbol{c}}_{P\phi }} \in {\Re ^{{\text{6}} \times n}}$基体与机械臂之间的非线性耦合速度相关项
    ${{\boldsymbol{F}}_P} \in {R^{ {\text{6} } \times {\text{1} } } }$作用于基体上的广义外部力项
    ${{\boldsymbol{F}}_E} \in {R^{ {\text{6} } \times {\text{1} } } }$作用于机械臂末端的广义外部力项
    ${\boldsymbol{\tau}} \in {R^{n \times {\text{1}}}}$关节力矩项
    ${{\boldsymbol{J}}_b} \in {\Re ^{ {\text{6} } \times {\text{6} } } }$基体参照自身的雅可比矩阵
    ${{\boldsymbol{J}}_\phi } \in {\Re ^{ {6} \times n} }$机械臂参照基体的雅可比矩阵
    下载: 导出CSV

    表  3  漂浮基6-DOF机械臂系统几何惯性参数

    Table  3.   Geometric and inertia parameters of a floating-base

    名称BaseL1L2L3L4L5L6
    质量/kg1335049.48230756.59214439.114.51
    ${\boldsymbol{a}}/{\rm{m} }$0−0.52−0.160−0.0260
    000000
    −0.20500−0.40−0.025
    ${\boldsymbol{ b}}/{\rm{m} }$001.880.2500.1050
    0000000
    0.9960.105001.10
    ${\boldsymbol{ I}}/\left(\mathrm{ ~ kg} \cdot \mathrm{m}^{2}\right)$6168.53.33819670.60529456.9 × 10−23.7 × 10−2
    6168.32.236380630.6229476.24 × 10−23.07 × 10−2
    9738.43.088386270.69152.98.65 × 10−22.12 × 10−2
    0.059 × 10−40.3313.13 × 10−22.18 × 10−41.9 × 10−28 × 10−5
    1.1 × 10−36.70 × 10−54.23 × 10−21.17 × 10−40.2791.09 × 10−34 × 10−3
    0.103−7.7 × 10−66.652.08 × 10−4−5.76 × 10−37.8 × 10−43.6 × 10−6
    下载: 导出CSV
  • [1] 田威, 焦嘉琛, 李波, 等. 航空航天制造机器人高精度作业装备与技术综述[J]. 南京航空航天大学学报, 2020, 52(3): 341-352.

    TIAN W, JIAO J C, LI B, et al. High precision robot operation equipment and technology in aerospace manufacturing[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2020, 52(3): 341-352. (in Chinese)
    [2] LIU Y W, GE Z, YANG S K, et al. Elephant’s trunk robot: an extremely versatile under-actuated continuum robot driven by a single motor[J]. Journal of Mechanisms and Robotics, 2019, 11(5): 051008. doi: 10.1115/1.4043923
    [3] 祁若龙, 张珂, 周维佳, 等. 机械臂高斯运动轨迹规划及操作成功概率预估计方法[J]. 机械工程学报, 2019, 55(1): 42-51. doi: 10.3901/JME.2019.01.042

    QI R L, ZHANG K, ZHOU W J, et al. Trajectory planning and success probability estimation of operation for gaussian motion manipulators[J]. Journal of Mechanical Engineering, 2019, 55(1): 42-51. (in Chinese) doi: 10.3901/JME.2019.01.042
    [4] 王天然. 机器人技术的发展[J]. 机器人, 2017, 39(4): 385-386.

    WANG T R. Development of the robotics[J]. Robot, 2017, 39(4): 385-386. (in Chinese)
    [5] 路达, 刘金国, 高海波. 星球表面着陆巡视一体化探测机器人研究进展[J]. 航空学报, 2021, 42(1): 93-109.

    LU D, LIU J G, GAO H B. Integrated exploration robots for planetary surface landing and patrolling: a review[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(1): 93-109. (in Chinese)
    [6] FENG F, TANG L N, XU J F, et al. A review of the end-effector of large space manipulator with capabilities of misalignment tolerance and soft capture[J]. Science China Technological Sciences, 2016, 59(11): 1621-1638. doi: 10.1007/s11431-016-0084-7
    [7] MOOSAVIAN S A A, PAPADOPOULOS E. Free-flying robots in space: an overview of dynamics modeling, planning and control[J]. Robotica, 2007, 25(5): 537-547. doi: 10.1017/S0263574707003438
    [8] JING Z L, XU Q M, HUANG J Z. A review on kinematic analysis and dynamic stable control of space flexible manipulators[J]. Aerospace Systems, 2019, 2(1): 1-14. doi: 10.1007/s42401-018-00024-4
    [9] 陈正仓, 周维佳. 漂浮基空间机械臂系统的非完整性研究[J]. 机械设计与制造, 2018(10): 257-260. doi: 10.3969/j.issn.1001-3997.2018.10.068

    CHEN Z C, ZHOU W J. Research on non-holonomic of a space-based manipulator system[J]. Machinery Design & Manufacture, 2018(10): 257-260. (in Chinese) doi: 10.3969/j.issn.1001-3997.2018.10.068
    [10] YOSHIDA K. Engineering test satellite VII flight experiments for space robot dynamics and control: theories on laboratory test beds ten years ago, now in orbit[J]. The International Journal of Robotics Research, 2003, 22(5): 321-335. doi: 10.1177/0278364903022005003
    [11] SICILIANO B, KHATIB O. Springer handbook of robotics[M]. 2nd ed. Cham: Springer, 2016: 1032-1060.
    [12] YANG G X, LIU Y W, GUAN L R. Design and simulation optimization of obstacle avoidance system for planetary exploration mobile robots[J]. Journal of Physics:Conference Series, 2019, 1176(3): 032038.
    [13] SONE H, NENCHEV D. Reactionless camera inspection with a free-flying space robot under reaction null-space motion control[J]. Acta Astronautica, 2016, 128: 707-721. doi: 10.1016/j.actaastro.2016.08.027
    [14] WEHAGE K T, WEHAGE R A, RAVANI B. Generalized coordinate partitioning for complex mechanisms based on kinematic substructuring[J]. Mechanism and Machine Theory, 2015, 92: 464-483. doi: 10.1016/j.mechmachtheory.2015.06.006
    [15] PAPPALARDO C M, LETTIERI A, GUIDA D. Stability analysis of rigid multibody mechanical systems with holonomic and nonholonomic constraints[J]. Archive of Applied Mechanics, 2020, 90(9): 1961-2005. doi: 10.1007/s00419-020-01706-2
    [16] SHAH S V, ANURAG V V, HAFEZ A H A, et al. Switching method to avoid algorithmic singularity in vision-based control of a space robot[C]//2015 International Conference on Advanced Robotics (ICAR). Istanbul, Turkey: IEEE, 2015: 271-276.
    [17] 吴玉香, 李杨, 关伟鹏. 带有未知参数和有界扰动的机械臂混沌反控制[J]. 华南理工大学学报(自然科学版), 2018, 46(10): 63-71.

    WU Y X, LI Y, GUAN W P. Anti-control of chaos for manipulator with unknown parameters and bounded disturbances[J]. Journal of South China University of Technology (Natural Science Edition), 2018, 46(10): 63-71. (in Chinese)
    [18] WANG H L. Adaptive control of robot manipulators with uncertain kinematics and dynamics[J]. IEEE Transactions on Automatic Control, 2017, 62(2): 948-954. doi: 10.1109/TAC.2016.2575827
    [19] 张博, 梁斌, 王学谦, 等. 基于自适应反作用零空间控制的大型非合作目标动力学参数实时辨识仿真[J]. 机器人, 2016, 38(1): 98-106.

    ZHANG B, LIANG B, WANG X Q, et al. Simulation of real-time dynamic parameter identification for large non-cooperative targets using adaptive reaction null space control[J]. Robot, 2016, 38(1): 98-106. (in Chinese)
    [20] ZHANG D, WEI B. A review on model reference adaptive control of robotic manipulators[J]. Annual Reviews in Control, 2017, 43: 188-198. doi: 10.1016/j.arcontrol.2017.02.002
    [21] HINATA R, NENCHEV D N. Balance stabilization with angular momentum damping derived from the reaction null-space[C]//18th International Conference on Humanoid Robots (Humanoids). Beijing, China: IEEE, 2018: 188-195.
    [22] 陈正仓. 漂浮基空间机械臂耦合动力学与基体无扰研究[D]. 沈阳: 中国科学院沈阳自动化研究所, 2017.

    CHEN Z C. Research on coupled dynamics of a space-based manipulator system and zero-disturbance of its floating base[D]. Shenyang: Shenyang Institute of Automation Chinese Academy of Sciences, 2017. (in Chinese)
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  132
  • HTML全文浏览量:  46
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-04
  • 刊出日期:  2023-12-25

目录

    /

    返回文章
    返回