留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多种后混合磨料水射流喷嘴的数值模拟及分析比较

吴伟 唐勇 袁硕 李明杰

吴伟,唐勇,袁硕, 等. 多种后混合磨料水射流喷嘴的数值模拟及分析比较[J]. 机械科学与技术,2023,42(12):2064-2071 doi: 10.13433/j.cnki.1003-8728.20220173
引用本文: 吴伟,唐勇,袁硕, 等. 多种后混合磨料水射流喷嘴的数值模拟及分析比较[J]. 机械科学与技术,2023,42(12):2064-2071 doi: 10.13433/j.cnki.1003-8728.20220173
WU Wei, TANG Yong, YUAN Shuo, LI Mingjie. Numerical Simulation and Analysis Comparison of Various Post-mixed Abrasive Water Jet Nozzle[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(12): 2064-2071. doi: 10.13433/j.cnki.1003-8728.20220173
Citation: WU Wei, TANG Yong, YUAN Shuo, LI Mingjie. Numerical Simulation and Analysis Comparison of Various Post-mixed Abrasive Water Jet Nozzle[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(12): 2064-2071. doi: 10.13433/j.cnki.1003-8728.20220173

多种后混合磨料水射流喷嘴的数值模拟及分析比较

doi: 10.13433/j.cnki.1003-8728.20220173
基金项目: 湖南省科技成果转化及产业化计划项目(2020GK2087)
详细信息
    作者简介:

    吴伟(1996−),硕士研究生,研究方向为固液二相流及流体机械,1632733886@qq.com

    通讯作者:

    唐勇,高级工程师,硕士生导师,博士,17782315@qq.com

  • 中图分类号: TG702

Numerical Simulation and Analysis Comparison of Various Post-mixed Abrasive Water Jet Nozzle

  • 摘要: 针对传统的后混合磨料水射流喷嘴中的磨料与水混合均匀性差,磨料射流能量低的问题。本文基于CFD欧拉多相流模型,利用Fluent软件对比磨料侧进式喷嘴、磨料中进式喷嘴以及改进的磨料中进式喷嘴在相同边界条件下计算得到的内外流场结果。分析结果表明:磨料侧进式喷嘴的磨料主要分布在速度较低的区域,未能进入高速水流内部,导致喷嘴内外流场的中心位置磨料射流能量低,磨料与水混合均匀性差;磨料中进式喷嘴很好的解决了磨料不能进入高速水流内部的问题,磨料体积分数和磨料速度从中心向外逐渐减小,射流效果明显改善;改进的磨料中进式喷嘴减小了高速水流在原磨料中进式喷嘴混合腔内的碰撞损耗,磨料在外流场的速度及动能都有一定提高。
  • 图  1  喷嘴结构模型

    Figure  1.  Structure model of nozzle

    图  2  磨料侧进式喷嘴的流体域模型

    Figure  2.  Fluid field model of abrasive side inlet nozzle

    图  3  磨料侧进式喷嘴的磨料体积分数云图

    Figure  3.  Contours of abrasive volume fraction of abrasive side inlet nozzle

    图  4  磨料侧进式喷嘴的磨料速度云图

    Figure  4.  Contours of abrasive velocity of abrasive side inlet nozzle

    图  5  磨料侧进式喷嘴的磨料体积分数云图

    Figure  5.  Contours of abrasive volume fraction of abrasive side inlet nozzle

    图  6  磨料侧进式喷嘴的磨料速度云图

    Figure  6.  Contours of abrasive velocity of abrasive side inlet nozzle

    图  7  磨料中进式喷嘴的流体域模型

    Figure  7.  Fluid field model of abrasive infeed nozzle

    图  8  磨料中进式喷嘴的磨料体积分数云图

    Figure  8.  Contours of abrasive volume fraction of abrasive infeed nozzle

    图  9  磨料中进式喷嘴的磨料速度云图

    Figure  9.  Contours of abrasive velocity of abrasive infeed nozzle

    图  10  磨料中进式喷嘴的磨料体积分数云图

    Figure  10.  Contours of abrasive volume fraction of abrasive infeed nozzle

    图  11  磨料中进式喷嘴的磨料速度云图

    Figure  11.  Contours of abrasive velocity of abrasive infeed nozzle

    图  12  改进的磨料中进式喷嘴的流体域模型

    Figure  12.  Fluid field model of improved abrasive infeed nozzle

    图  13  改进的磨料中进式喷嘴的磨料体积分数云图

    Figure  13.  Contours of abrasive volume fraction of improved abrasive infeed nozzle

    图  14  改进的磨料中进式喷嘴的磨料速度云图

    Figure  14.  Contours of abrasive velocity of improved abrasive infeed nozzle

    图  15  改进的磨料中进式喷嘴的磨料体积分数

    Figure  15.  Contours of abrasive volume fraction of improved abrasive infeed nozzle

    图  16  改进的磨料中进式喷嘴的磨料速度云图

    Figure  16.  Contours of abrasive velocity of improved abrasive infeed nozzle

    图  17  磨料体积分数波动图

    Figure  17.  Fluctuation of abrasive volume fraction

    图  18  磨料速度波动图

    Figure  18.  Fluctuation of abrasive velocity

    图  19  $ \rho {v_2^2} $波动图

    Figure  19.  Fluctuation of $\rho {v_2^2} $ values

    表  1  喷嘴几何参数

    Table  1.   Geometrical parameters of nozzle mm

    d1d2d3d4L1L2L3
    42464353050
    注:α=33.4°
    下载: 导出CSV

    表  2  网格无关性证明

    Table  2.   The proof of grid independence

    网格数量/万出口速度/(m·s−1)偏差/%
    20 ~ 3061.241.575
    30 ~ 4061.870.563
    40 ~ 5062.130.145
    50 ~ 6062.290.113
    下载: 导出CSV

    表  3  $ \rho {v_2^2} $值的结果统计表

    Table  3.   The statistical table of $\rho {v_2^2} $ values kg/(m·s2)

    喷嘴最大值/
    106
    最小值/
    103
    均值/
    106
    方差/
    1012
    磨料侧进式喷嘴3.63402.31.2
    磨料中进式喷嘴5.32.51.74.3
    改进的磨料中进式喷嘴5.92.41.94.9
    下载: 导出CSV
  • [1] 李晓红, 卢义玉, 向文英. 水射流理论及在矿业工程中的应用[M]. 重庆: 重庆大学出版社, 2007.

    LI X H, LU Y Y, XIANG W Y. Water jet theory and its application in mining engineering[M]. Chongqing: Chongqing University Press, 2007. (in Chinese)
    [2] DU M M, WANG H J, DONG H Y, et al. Numerical research on multi-particle movements and nozzle wear involved in abrasive waterjet machining[J]. The International Journal of Advanced Manufacturing Technology, 2021, 117(9-10): 2845-2858. doi: 10.1007/s00170-021-07876-9
    [3] KUMAR A, GUPTA T V K, JHA R K, et al. Wear analysis of abrasive waterjet nozzle using suprathreshold stochastic resonance technique[J]. Proceedings of the Institution of Mechanical Engineers, Part E:Journal of Process Mechanical Engineering, 2021, 235(2): 499-504. doi: 10.1177/0954408920968354
    [4] 刘国勇, 王宽宽, 陈欣欣, 等. 后混合磨料水射流除鳞喷嘴内部流场数值模拟[J]. 工程科学学报, 2015, 37(S1): 29-34.

    LIU G Y, WANG K K, CHEN X X, et al. Numerical simulation of internal flow field for post-mixed abrasive water jet descaling nozzle[J]. Chinese Journal of Engineering, 2015, 37(S1): 29-34. (in Chinese)
    [5] 黄飞, 胡斌, 左伟芹, 等. 不同形状喷嘴的高压水射流冲击力特性实验[J]. 重庆大学学报, 2019, 42(9): 123-132.

    HUANG F, HU B, ZUO W Q, et al. Experiments on the impact pressure of high-pressure water jet under different nozzle shapes[J]. Journal of Chongqing University, 2019, 42(9): 123-132. (in Chinese)
    [6] 姚仁太, 郭栋鹏, 杨秋林, 等. 计算流体力学基础与STAR-CD工程应用[M]. 北京: 国防工业出版社, 2015.

    YAO R T, GUO D P, YANG Q L, et al. Fundamentals of computational fluid dynamics and STAR-CD engineering application[M]. Beijing: National Defense Industry Press, 2015. (in Chinese)
    [7] 田家林, 胡志超, 刘松, 等. 磨料水射流仿真分析与试验研究[J]. 流体机械, 2021, 49(2): 8-13.

    TIAN J L, HU Z C, LIU S, et al. Simulation analysis and experimental research of abrasive water jet[J]. Fluid Machinery, 2021, 49(2): 8-13. (in Chinese)
    [8] FICKO M, BEGIC-HAJDAREVIC D, COHODAR HUSIC M, et al. Prediction of surface roughness of an abrasive water jet cut using an artificial neural network[J]. Materials, 2021, 14(11): 3108. doi: 10.3390/ma14113108
    [9] ILUKHINA A A, KOLPAKOV V I, VELTISHCHEV V V, et al. The development of a physico-mathematical model for the functioning of an underwater waterjet cutting machine[J]. Moscow University Physics Bulletin, 2020, 75(2): 167-174. doi: 10.3103/S0027134920020058
    [10] QIANG Z R, WU M P, MIAO X J, et al. CFD research on particle movement and nozzle wear in the abrasive water jet cutting head[J]. The International Journal of Advanced Manufacturing Technology, 2018, 95(9): 4091-4100.
    [11] 陈冰冰, 张立, 闫如忠. 磨料射流喷嘴压力场与速度场的研究[J]. 组合机床与自动化加工技术, 2020(1): 47-50.

    CHEN B B, ZHANG L, YAN R Z. Study on pressure field and velocity field of abrasive jet nozzle[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2020(1): 47-50. (in Chinese)
    [12] 杨友胜, 张建平, 聂松林. 水射流喷嘴能量损失研究[J]. 机械工程学报, 2013, 49(2): 139-145. doi: 10.3901/JME.2013.02.139

    YANG Y S, ZHANG J P, NIE S L. Energy loss of nozzles in water jet system[J]. Journal of Mechanical Engineering, 2013, 49(2): 139-145. (in Chinese) doi: 10.3901/JME.2013.02.139
    [13] 郭子豪, 傅连东. 基于数值模拟的高压磨料射流喷嘴流场分析及结构优化[J]. 武汉科技大学学报, 2020, 43(3): 201-207.

    GUO Z H, FU L D. Flow field analysis and structural optimization of high-pressure abrasive jet nozzle based on numerical simulation[J]. Journal of Wuhan University of Science and Technology, 2020, 43(3): 201-207. (in Chinese)
    [14] 徐启文. 前混合磨料射流外部流场的数值模拟与实验研究[D]. 徐州: 中国矿业大学, 2019.

    XU Q W. Numerical simulation and experimental research on external flow field of abrasive water suspension jet[D]. Xuzhou: China University of Mining and Technology, 2019. (in Chinese)
    [15] 管华双, 姜晨, 李佳音, 等. 微通道反应器沟槽底面的磨料水射流抛光研究[J]. 流体机械, 2021, 49(3): 8-13.

    GUAN H S, JIANG C, LI J Y, et al. Research on abrasive waterjet polishing of groove bottom surface in microchannel reactor[J]. Fluid Machinery, 2021, 49(3): 8-13. (in Chinese)
    [16] 杨欢, 侯荣国, 吕哲, 等. 多物理场作用下磁场辅助微细磨料水射流流场数值模拟[J]. 机床与液压, 2019, 47(11): 151-154.

    YANG H, HOU R G, LV Z, et al. Numerical simulation of micro abrasive water jet flow field assisted by magnetic field under action of multi-physics field[J]. Machine Tool & Hydraulics, 2019, 47(11): 151-154. (in Chinese)
    [17] CHEUNG C F, WANG C J, CAO Z C, et al. Development of a multi-jet polishing process for inner surface finishing[J]. Precision Engineering, 2018, 52: 112-121. doi: 10.1016/j.precisioneng.2017.11.018
    [18] 张滕飞, 邓松圣, 陈晓晨, 等. 后混磨料射流颗粒运动仿真和实验分析[J]. 重庆理工大学学报(自然科学), 2015, 29(2): 57-60.

    ZHANG T F, DENG S S, CHEN X C, et al. Simulation and analysis of post-mixed abrasive water jet particle trajectory[J]. Journal of Chongqing University of Technology (Natural Science), 2015, 29(2): 57-60. (in Chinese)
  • 加载中
图(19) / 表(3)
计量
  • 文章访问数:  70
  • HTML全文浏览量:  68
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-27
  • 刊出日期:  2023-12-25

目录

    /

    返回文章
    返回