留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

盘式制动器在不同制动模式下的热-机耦合行为研究

袁琼

袁琼. 盘式制动器在不同制动模式下的热-机耦合行为研究[J]. 机械科学与技术,2024,43(3):446-456 doi: 10.13433/j.cnki.1003-8728.20220169
引用本文: 袁琼. 盘式制动器在不同制动模式下的热-机耦合行为研究[J]. 机械科学与技术,2024,43(3):446-456 doi: 10.13433/j.cnki.1003-8728.20220169
YUAN Qiong. Study on Thermal-mechanical Coupling Behavior of Disc Brake System Under Different Braking Modes[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(3): 446-456. doi: 10.13433/j.cnki.1003-8728.20220169
Citation: YUAN Qiong. Study on Thermal-mechanical Coupling Behavior of Disc Brake System Under Different Braking Modes[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(3): 446-456. doi: 10.13433/j.cnki.1003-8728.20220169

盘式制动器在不同制动模式下的热-机耦合行为研究

doi: 10.13433/j.cnki.1003-8728.20220169
基金项目: 重庆市自然科学基金面上项目(cstc2020jcyj-msxmX1016)与重庆市教委科学技术研究项目(KJQN202203202)
详细信息
    作者简介:

    袁琼,讲师,硕士,yq0507@126.com

  • 中图分类号: TH113.1

Study on Thermal-mechanical Coupling Behavior of Disc Brake System Under Different Braking Modes

  • 摘要: 对盘式制动器在拖曳制动、紧急制动和缓慢制动这3种不同制动模式下的热-机耦合行为进行分析。结果表明,在拖曳制动模式下,制动盘两侧摩擦片的变形形式各不相同,因此制动盘两侧摩擦片的温度分布不一致。此外,钳指侧和活塞侧摩擦片的振动信号和接触力信号差异明显,钳指侧对摩擦副的摩擦振动逐渐加剧,并产生新的振动频率;活塞侧对摩擦副的振动趋于稳定,原有的振动频率逐渐消失;在紧急制动模式下,制动盘两侧摩擦片的温度分布特征类似,均是从进摩擦区向出摩擦区扩散,但是由于作用时间较短,温度上升不明显。但两侧摩擦片的振动信号有所区别,尤其是活塞侧摩擦片出现持续自激振动,并且产生新的振动频率。在缓慢制动模式下,虽然制动盘两侧的摩擦片外径均为表面高温区,但在制动后期,活塞侧摩擦片表面高温排布呈现出“点状分布式”特点。钳指侧摩擦片和活塞侧摩擦片的振动信号存在差异,钳指侧摩擦片振动持续时间较长,但其振动强度较活塞侧则更加微弱。界面力学信号分析结果很好地验证了该结论。
  • 图  1  制动器三维模型、有限元模型和边界条件

    Figure  1.  3D model,finite element model and boundaryconditions of the brake

    图  2  3种不同的制动模式速度变化曲线

    Figure  2.  Speed change curves in three different braking modes

    图  3  拖曳制动模式下两侧摩擦片表面温度分布图

    Figure  3.  Temperature distribution of both-side friction pads under drag braking mode

    图  4  拖曳制动模式下两侧摩擦片的振动加速度信号

    Figure  4.  Vibration acceleration signals of both-side friction pads under drag braking mode

    图  5  拖曳制动模式下两侧摩擦片的振动信号时频分析图

    Figure  5.  Vibration signal time-frequency analysis of both-sidefriction pads under drag braking mdoe

    图  6  拖曳制动模式下两侧摩擦副的接触力

    Figure  6.  Contact force of both-side friction pair under drag braking mode

    图  7  紧急制动模式下两侧摩擦片表面温度分布图

    Figure  7.  Temperature distribution of both side friction pads under emergency braking mode

    图  8  紧急制动模式下两侧摩擦片的振动加速度信号

    Figure  8.  Vibration acceleration signals of both-side friction pads under emergency braking mode

    图  9  紧急制动模式下两侧摩擦片的振动信号时频分析图

    Figure  9.  Vibration signal time-frequency analysis of both-side friction pads under emergency braking mode

    图  10  紧急制动模式下两侧摩擦副的接触力

    Figure  10.  Contact force of both-side friction pair under emergency braking mode

    图  11  缓慢制动模式下两侧摩擦片表面温度分布图

    Figure  11.  Temperature distribution of both side friction pads under slow braking mode

    图  12  缓慢制动模式下两侧摩擦片的振动加速度信号

    Figure  12.  Vibration acceleration signals of both-side friction pads under slow braking mode

    图  13  缓慢制动模式下两侧摩擦片的振动信号时频分析图

    Figure  13.  Vibration signals time-frequency analysis of both-side friction pads under slow braking mode

    图  14  缓慢制动模式下两侧摩擦副的接触力

    Figure  14.  Contact force of both-side friction pair under slow braking mode

    表  1  模型的网格数量和特征

    Table  1.   Number of grids number and characteristics of the model

    部件名称网格数量网格特征最小网格尺寸/mm
    通风制动盘 36 323 C3D8 + C3D4 3.317
    钳指侧摩擦片 17 079 C3D8 0.879
    活塞侧摩擦片 17 079 C3D8 0.879
    活塞缸 12 421 C3D8 4.260
    制动背板 6 885 C3D8 1.002
    制动夹钳 112 033 C3D4 2.595
    下载: 导出CSV

    表  2  模型各部件材料参数

    Table  2.   Material parameters of each component of the model

    参数制动盘摩擦衬片制动背板
    密度/(kg·m−3 7 900 2 500 7 200
    E/GPa 205 3.50 190
    泊松比 0.30 0.28 0.30
    比热/107 45 120 42
    热传导系数 48 1 48
    热膨胀系数 1.1×105 1.1×105(20 ℃) 1.1×105
    3.1×105(300 ℃)
    下载: 导出CSV
  • [1] 钟志华, 乔英俊, 王建强, 等. 新时代汽车强国战略研究综述(一)[J]. 中国工程科学, 2018, 20(1): 1-10.

    ZHONG Z H, QIAO Y J, WANG J Q, et al. Summary of strategy research on automobile power in new era (I)[J]. Strategic Study of CAE, 2018, 20(1): 1-10. (in Chinese)
    [2] 孟德建, 张立军, 阮丞, 等. 摩擦引起的制动器热点问题综述[J]. 同济大学学报(自然科学版), 2014, 42(8): 1203-1210.

    MENG D J, ZHANG L J, RUAN C, et al. Literature survey of friction-induced hot spots in brakes[J]. Journal of Tongji University (Natural Science), 2014, 42(8): 1203-1210. (in Chinese)
    [3] 孟德建, 张彬, 徐杰, 等. 制动钳及其约束对制动器热机耦合特性的影响[J]. 同济大学学报(自然科学版), 2019, 47(5): 704-713.

    MENG D J, ZHANG B, XU J, et al. Effect of brake caliper and its restraint on thermo-mechanical coupling characteristics of disc brake[J]. Journal of Tongji University (Natural Science), 2019, 47(5): 704-713. (in Chinese)
    [4] 张立军, 陈远, 刁坤, 等. 盘式制动器接触压力与热机耦合特性仿真分析[J]. 同济大学学报(自然科学版), 2013, 41(10): 1554-1561.

    ZHANG L J, CHEN Y, DIAO K, et al. Computational investigation into disc-pads pressure distribution and thermomechanical coupling characteristics of brake pads in disc brake[J]. Journal of Tongji University (Natural Science), 2013, 41(10): 1554-1561. (in Chinese)
    [5] BELHOCINE A, ABDULLAH O I. A thermomechanical model for the analysis of disc brake using the finite element method in frictional contact[J]. Journal of Thermal Stresses, 2020, 43(3): 305-320. doi: 10.1080/01495739.2019.1683482
    [6] BENHASSINE N, HAIAHEM A, BOU-SAID B. A comparative study of the transient thermomechanical behavior of friction of the ceramic brake discs: temperature field effect[J]. Journal of Mechanical Science and Technology, 2019, 33(1): 233-240. doi: 10.1007/s12206-018-1223-4
    [7] YEVTUSHENKO A A, KUCIEJ M. One-dimensional thermal problem of friction during braking: the history of development and actual state[J]. International Journal of Heat and Mass Transfer, 2012, 55(15-16): 4148-4153. doi: 10.1016/j.ijheatmasstransfer.2012.03.056
    [8] 张森, 肖林京, 刘强, 等. 汽车通风盘式制动器的摩擦学性能测试和流固热耦合仿真[J]. 汽车工程, 2017, 39(6): 675-682.

    ZHANG S, XIAO L J, LIU Q, et al. Tribology performance testing and fluid-solid-heat coupling simulation of automotive ventilated disc brake[J]. Automotive Engineering, 2017, 39(6): 675-682. (in Chinese)
    [9] DJAFRI M, BOUCHETARA M, BUSCH C, et al. Influence of thermal fatigue on the wear behavior of brake discs sliding against organic and semimetallic friction materials[J]. Tribology Transactions, 2018, 61(5): 861-868. doi: 10.1080/10402004.2018.1437491
    [10] ZHANG J, XIA C G. Research of the transient temperature field and friction properties on disc brakes[J]. Advanced Materials Research, 2013, 756-759: 4331-4335. doi: 10.4028/www.scientific.net/AMR.756-759.4331
    [11] 袁琼, 李仕生. 拖曳与启停制动模式下盘式制动器热-机耦合特性研究[J]. 机械强度, 2020, 42(5): 1191-1197.

    YUAN Q, LI S S. Study on the thermal-mechanical coupling characteristics of disc brake under drag and start-stop breaking modes[J]. Journal of Mechanical Strength, 2020, 42(5): 1191-1197. (in Chinese)
    [12] 袁琼, 唐鹏, 李仕生. 制动盘非光滑仿生表面对制动摩擦尖叫行为影响的研究[J]. 现代制造工程, 2020(9): 62-69.

    YUAN Q, TANG P, LI S S. Study on the influence of non-smooth bionic brake disc on the squeal instability of disc brake system[J]. Modern Manufacturing Engineering, 2020(9): 62-69. (in Chinese)
    [13] 刘莹, 毕勇强, 宋涛, 等. 矿车盘式制动器热-结构耦合分析[J]. 润滑与密封, 2015, 40(5): 11-15.

    LIU Y, BI Y Q, SONG T, et al. Thermal-structure coupling analysis on disc brake of mineral car[J]. Lubrication Engineering, 2015, 40(5): 11-15. (in Chinese)
    [14] 张立军, 刁坤. 面向热机耦合特性分析的制动器摩擦特性模型[J]. 同济大学学报(自然科学版), 2011, 39(11): 1680-1686.

    ZHANG L J, DIAO K. Friction modeling for thermo-mechanical coupling characterization of disc brake[J]. Journal of Tongji University (Natural Science), 2011, 39(11): 1680-1686. (in Chinese)
    [15] OUYANG H J, ABU-BAKAR A R, LI L J. A combined analysis of heat conduction, contact pressure and transient vibration of a disk brake[J]. International Journal of Vehicle Design, 2009, 51(1-2): 190-206.
    [16] ABU BAKAR A R, OUYANG H J, KHAIA L C, et al. Thermal analysis of a disc brake model considering a real brake pad surface and wear[J]. International Journal of Vehicle Structures and Systems, 2010, 2(1): 20-27.
    [17] 袁琼, 唐鹏, 李仕生. 降低制动摩擦振动的制动器结构拓扑优化设计[J]. 机械科学与技术, 2021, 40(9): 1391-1396.

    YUAN Q, TANG P, LI S S. Topology optimization design of brake structure to reduce friction-induced vibration and noise[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(9): 1391-1396. (in Chinese)
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  47
  • HTML全文浏览量:  20
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-18
  • 刊出日期:  2024-03-25

目录

    /

    返回文章
    返回