留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

矿井救援机器人的B样条-APF-BRRT路径规划方法

姜媛媛 李宏伟 路子佩

姜媛媛,李宏伟,路子佩. 矿井救援机器人的B样条-APF-BRRT路径规划方法[J]. 机械科学与技术,2023,42(11):1929-1936 doi: 10.13433/j.cnki.1003-8728.20220168
引用本文: 姜媛媛,李宏伟,路子佩. 矿井救援机器人的B样条-APF-BRRT路径规划方法[J]. 机械科学与技术,2023,42(11):1929-1936 doi: 10.13433/j.cnki.1003-8728.20220168
JIANG Yuanyuan, LI Hongwei, LU Zipei. A Path Planning Method for Mine Rescue Robot Based on B-spline-APF-BRRT Algorithm[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(11): 1929-1936. doi: 10.13433/j.cnki.1003-8728.20220168
Citation: JIANG Yuanyuan, LI Hongwei, LU Zipei. A Path Planning Method for Mine Rescue Robot Based on B-spline-APF-BRRT Algorithm[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(11): 1929-1936. doi: 10.13433/j.cnki.1003-8728.20220168

矿井救援机器人的B样条-APF-BRRT路径规划方法

doi: 10.13433/j.cnki.1003-8728.20220168
基金项目: 安徽省重点研究与开发计划(202104g01020012)与安徽理工大学环境友好材料与职业健康研究院研发专项(ALW2020YF1)
详细信息
    作者简介:

    姜媛媛(1982−),教授,博士,研究方向为机器人导航与控制、智能诊断及故障预测,jyyll672@163.com

  • 中图分类号: TP242.6

A Path Planning Method for Mine Rescue Robot Based on B-spline-APF-BRRT Algorithm

  • 摘要: 针对矿井非结构化、形状狭长的地形结构以及传统BRRT算法规划路径曲折、转折点较多等路径质量较差问题,提出一种基于B样条-APF-BRRT算法的矿井救援机器人路径规划方法。首先根据BRRT路径中产生的目标点和矿井环境中障碍物信息,引入APF目标引力的思想,构建人工势场;然后利用Douglas-Peuker算法进行分线段处理,重新提取关键节点;最后使用B样条函数进行光滑拟合获得路径,减少了APF-BRRT算法所得路径的转折点和长度。对B样条-APF-BRRT算法进行实验,结果表明改进算法所获路径转折点和长度都明显优于BRRT算法,在矿井狭窄巷道中,相对于BRRT算法,B样条-APF-BRRT方法产生的路径更加平滑,转折次数减少到9次,路径长度减少了7.73%。
  • 图  1  BRRT算法规划示意图

    Figure  1.  Schematic diagram of BRRT algorithm planning

    图  2  基于APF的移动机器人受力示意图

    Figure  2.  Schematic diagram of forces exerted by mobile robot based on APF

    图  3  B样条拟合曲线示意图

    Figure  3.  Schematic of APF-based mobile robot forces

    图  4  B样条-APF-BRRT算法流程图

    Figure  4.  Flowchart of B spline-APF-BRRT algorithm

    图  5  简单环境下B样条-APF-BRRT运动路径

    Figure  5.  B-spline-APF-BRRT motion path in a simple environment

    图  6  复杂环境下B样条-APF-BRRT运动路径

    Figure  6.  B-spline-APF-BRRT motion paths in complex environments

    图  7  狭窄巷道环境下B样条-APF-BRRT运动路径

    Figure  7.  B-spline-APF-BRRT motion path in narrow alleyenvironment

    图  8  简单环境下B样条-APF-BRRT运动路径

    Figure  8.  B-spline-APF-BRRT motion path in simple environments

    图  9  简单环境下B样条-BRRT运动路径

    Figure  9.  B-spline-BRRT motion paths in simple environments

    图  10  4种算法对比实验结果

    Figure  10.  Comparing experimental results on four algorithms

    表  1  3种算法在不同环境下的性能测试对比结果

    Table  1.   Comparison results of three algorithms′ performance tests in different environments

    地图简单环境复杂环境狭窄巷道
    原始路径长度/m 688.31 805.38 862.30
    本文路径长度/m 660.30 756.42 795.62
    原始路径节点总数/个 27 34 37
    提取的关键节点/个 9 11 11
    原始路径转折次数/次 25 32 34
    本文路径转折次数/次 7 9 9
    下载: 导出CSV

    表  2  有无APF算法性能测试结果对比

    Table  2.   Comparison of performance test results with and without APF algorithm

    算法B-APF-BRRTB-BRRT
    路径长度/m674.38730.54
    节点总数/个911
    转折次数/次79
    下载: 导出CSV

    表  3  本文算法与传统算法性能测试对比结果

    Table  3.   Comparison of the performance test results ofthis paper′s algorithm and the traditional algorithm

    算法本文算法A*GARRT
    路径长度/m 601.34 592.27 740.00 720.79
    时间/s 3.20 37.58 29.92 5.44
    转折次数/次 3 7 1 20
    下载: 导出CSV
  • [1] 葛世荣. 煤矿机器人现状及发展方向[J]. 中国煤炭, 2019, 45(7): 18-27.

    GE S R. Present situation and development direction of coal mine robots[J]. China Coal, 2019, 45(7): 18-27. (in Chinese)
    [2] LI M G, ZHU H, YOU S Z, et al. UWB-Based localization system aided with inertial sensor for underground coal mine applications[J]. IEEE Sensors Journal, 2020, 20(12): 6652-6669. doi: 10.1109/JSEN.2020.2976097
    [3] JU C Y, LUO Q H, YAN X Z. Path planning using an improved A-star algorithm[C]//2020 11th International Conference on Prognostics and System Health Management (PHM-2020 Jinan). Jinan, China: IEEE, 2020: 23-26.
    [4] LI W Z, LIU J J, YAO S L. An improved Dijkstra′s algorithm for shortest path planning on 2D grid maps[C]//2019 IEEE 9th International Conference on Electronics Information and Emergency Communication (ICEIEC). Beijing, China: IEEE, 2019: 438-441.
    [5] CHEN X Y, DAI Y H. Research on an improved ant colony algorithm fusion with genetic algorithm for route planning[C]//2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). Chongqing, China: IEEE, 2020: 1273-1278.
    [6] KONG S, ZHANG L Q. A path planning algorithm for sweeping robot based on improved neural network[C]//2019 3rd International Conference on Electronic Information Technology and Computer Engineering (EITCE). Xiamen, China: IEEE, 2019: 359-362.
    [7] CHEN L, SHAN Y X, TIAN W, et al. A fast and efficient double-Tree RRT*-Like sampling-based planner applying on mobile robotic systems[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(6): 2568-2578. doi: 10.1109/TMECH.2018.2821767
    [8] 李兆强, 张时雨. 基于快速RRT算法的三维路径规划算法研究[J]. 系统仿真学报, 2022, 34(3): 503-511. doi: 10.16182/j.issn1004731x.joss.20-0829

    LI Z Q, ZHANG S Y. Research on 3D path planning Algorithm based on fast RRT algorithm[J]. Journal of System Simulation, 2022, 34(3): 503-511. (in Chinese) doi: 10.16182/j.issn1004731x.joss.20-0829
    [9] 姜媛媛, 陶德俊, 时美乐, 等. DP-B样条移动机器人路径光滑算法[J]. 机械科学与技术, 2020, 39(4): 554-560. doi: 10.13433/j.cnki.1003-8728.20190157

    JIANG Y Y, TAO D J, SHI M L, et al. Path smoothing algorithm of mobile robot based on DP-B spline[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(4): 554-560. (in Chinese) doi: 10.13433/j.cnki.1003-8728.20190157
    [10] ZHAO X L, CAO Z Q, GENG W J, et al. Path planning of manipulator based on RRT-Connect and Bezier curve[C]//2019 IEEE 9th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER). Suzhou, China: IEEE, 2019: 649-653.
    [11] MASHAYEKHI R, IDRIS M Y I, ANISI M H, et al. Informed RRT*-Connect: an asymptotically optimal single-query path planning method[J]. IEEE Access, 2020, 8: 19842-19852. doi: 10.1109/ACCESS.2020.2969316
    [12] SHU X, NI F L, ZHOU Z, LIU Y C, LIU H, ZOU T. Locally guided multiple Bi-RRT* for fast path planning in narrow passages[C]//2019 IEEE International Conference on Robotics and Biomimetics (ROBIO). Dali, China: IEEE, 2019: 2085-2091.
    [13] 刘奥博, 袁杰. 目标偏置双向RRT*算法的机器人路径规划[J]. 计算机工程与应用, 2022, 58(6): 234-240.

    LIU A B, YUAN J. Robot path planning based on goal biased bidirectional RRT* algorithm[J]. Computer Engineering and Applications, 2022, 58(6): 234-240. (in Chinese)
    [14] 皇甫淑云. 矿井救灾机器人障碍物识别与路径规划研究[D]. 徐州: 中国矿业大学, 2020.

    HUANGFU S Y. Research on obstacle identification and path planning of mine disaster relief robot[D]. Xuzhou: China University of Mining and Technology, 2020. (in Chinese)
    [15] 许万, 杨晔, 余磊涛, 等. 一种基于改进RRT*的全局路径规划算法[J]. 控制与决策, 2022, 37(4): 829-838.

    XU W, YANG Y, YU L T, et al. A global path planning algorithm based on improved RRT*[J]. Control and Decision, 2022, 37(4): 829-838. (in Chinese)
    [16] LI K Y, LU Y G, ZHANG Y C. Dynamic obstacle avoidance path planning of UAV based on improved APF[C]//2020 5th International Conference on Communication, Image and Signal Processing (CCISP). Chengdu, China: IEEE, 2020: 159-163.
    [17] 黄肖文, 任彦. 基于APF-RRT融合算法的无人机航迹规划研究[J]. 绿色科技, 2020(6): 220-221. doi: 10.16663/j.cnki.lskj.2020.06.074

    HUANG X W, REN Y. Design and realization of data dynamic distribution algorithm for HDFS[J]. Journal of Green Science and Technology, 2020(6): 220-221. (in Chinese) doi: 10.16663/j.cnki.lskj.2020.06.074
    [18] ZHU J, ZHAO S L, ZHAO R. Path planning for autonomous underwater vehicle based on artificial potential field and modified RRT[C]//2021 International Conference on Computer, Control and Robotics (ICCCR). Shanghai: IEEE, 2021: 21-25.
    [19] WU Z C, SU W Z, LI J H. Multi-robot path planning based on improved artificial potential field and B-spline curve optimization[C]//2019 Chinese Control Conference (CCC). Guangzhou: IEEE, 2019: 4691-4696.
    [20] WANG X L, ZHANG D. Selecting optimal threshold value of Douglas-Peucker algorithm based on curve fit[C]//2010 First International Conference on Networking and Distributed Computing. Hangzhou: IEEE, 2010: 251-254.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  117
  • HTML全文浏览量:  90
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-15
  • 刊出日期:  2023-11-30

目录

    /

    返回文章
    返回