留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非穿透型齿根裂纹应力强度因子权函数法求解

郭磊 何芝仙 时培成

郭磊,何芝仙,时培成. 非穿透型齿根裂纹应力强度因子权函数法求解[J]. 机械科学与技术,2023,42(11):1867-1871 doi: 10.13433/j.cnki.1003-8728.20220166
引用本文: 郭磊,何芝仙,时培成. 非穿透型齿根裂纹应力强度因子权函数法求解[J]. 机械科学与技术,2023,42(11):1867-1871 doi: 10.13433/j.cnki.1003-8728.20220166
GUO Lei, HE Zhixian, SHI Peicheng. Solving Stress Intensity Factor of a Non-penetrating Dedendum Crack Using Weight Function Method[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(11): 1867-1871. doi: 10.13433/j.cnki.1003-8728.20220166
Citation: GUO Lei, HE Zhixian, SHI Peicheng. Solving Stress Intensity Factor of a Non-penetrating Dedendum Crack Using Weight Function Method[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(11): 1867-1871. doi: 10.13433/j.cnki.1003-8728.20220166

非穿透型齿根裂纹应力强度因子权函数法求解

doi: 10.13433/j.cnki.1003-8728.20220166
基金项目: 国家自然科学基金项目(51575001)
详细信息
    作者简介:

    郭磊(1995−),硕士研究生,研究方向为机械系统动力学,2190130140@stu.ahpu.edu.cn

    通讯作者:

    何芝仙,教授,博士,hzx@ahpu.edu.cn

  • 中图分类号: TH123.3

Solving Stress Intensity Factor of a Non-penetrating Dedendum Crack Using Weight Function Method

  • 摘要: 齿轮齿根是具有非穿透性的三维裂纹,其应力强度因子计算求解难度大且过程复杂。对此应用片条合成权函数法将三维裂纹问题转化为一系列“等效的”薄片单元二维裂纹问题。根据作用在薄片单元上的法向力按照其啮合刚度进行分配,求出作用于每个薄片单元上的法向力,再运用二维裂纹权函数法计算每个薄片单元裂纹应力强度因子。其求解结果与有限元法计算结果十分吻合,最大误差为3.9%。
  • 图  1  片条合成权函数法示意图

    Figure  1.  Schematic diagram of the slice-synthesis weight function method

    图  2  齿根薄片单元力学模型

    Figure  2.  The mechanical model of the slice element of the cracked dedendum

    图  3  法向载荷沿齿宽方向分布

    Figure  3.  Normal load distribution along tooth width

    图  4  齿顶法向力作用时裂纹尖端各点的应力强度因子

    Figure  4.  Stress intensity factors at each crack tip under normal force at gear addendum

    图  5  齿根裂纹轮齿有限元模型

    Figure  5.  The finite element model of crack dedendum

    图  6  啮合过程中齿根裂纹应力强度因子变化图

    Figure  6.  Variation of stress intensity factor of crack dedendum in the meshing process

    表  1  齿根边缘裂纹权函数的$ {\beta _i}\left( a \right) $系数[12]

    Table  1.   Coefficient of root edge crack weight function [12]

    $ a $$ {\beta _1}\left( a \right) $$ {\beta _2}\left( a \right) $$ {\beta _3}\left( a \right) $$ {\beta _4}\left( a \right) $
    0.012.0000−4.38054.7674−1.6455
    0.052.0000−1.51174.5540−1.4116
    0.102.0000−0.00744.4334−1.2872
    0.202.00001.88112.1992−0.7144
    0.302.00003.89760.9383−0.3278
    0.402.00005.58872.6754−0.5625
    0.502.00007.84984.9653−0.8697
    0.602.000011.9387.2380−1.0518
    0.702.000017.31115.699−2.3857
    0.802.000023.43636.751−6.1878
    0.852.000030.37549.189−8.2129
    0.902.000054.71260.001−8.7527
    下载: 导出CSV

    表  2  权函数法与有限元法应力强度因子对比

    Table  2.   Comparison of stress intensity factors between weight function method and finite element method

    轴向单元数权函数法/
    ($\rm MPa\cdot {\rm{m}}^{\tfrac{1}{2}} $)
    有限元法/
    ($\rm MPa\cdot {\rm{m}}^{\tfrac{1}{2}} $)
    相对误差/
    %
    13.56953.7122−3.9
    22.93312.9785−2.6
    32.24052.21071.3
    41.29561.26262.6
    50.10370.10471.1
    下载: 导出CSV
  • [1] ABERŠEK B, FLAŠKER J. Stress intensity factor for cracked gear tooth[J]. Theoretical and Applied Fracture Mechanics, 1994, 20(2): 99-104. doi: 10.1016/0167-8442(94)00004-2
    [2] GUAGLIANO M, VERGANI L. Mode I stress intensity factors for curved cracks in gears by a weight functions method[J]. Fatigue & Fracture of Engineering Materials & Structures, 2001, 24(1): 41-52.
    [3] POPA C O, HARAGÂŞ S. A simulation of the stress intensity factors KI and KII variation in the Hertzian stresses field of gear teeth[J]. Applied Mechanics and Materials, 2016, 823: 17-22. doi: 10.4028/www.scientific.net/AMM.823.17
    [4] PEHAN S, HELLEN T K, FLASKER J, et al. Numerical methods for determining stress intensity factors vs crack depth in gear tooth roots[J]. International Journal of Fatigue, 1997, 19(10): 677-685. doi: 10.1016/S0142-1123(97)00101-1
    [5] SHAO R P, DONG F F, WANG W, et al. Influence of cracks on dynamic characteristics and stress intensity factor of gears[J]. Engineering Failure Analysis, 2013, 32: 63-80. doi: 10.1016/j.engfailanal.2013.03.008
    [6] DONG F F, SHAO R P, MA J. Research on stress intensity factor of gear crack and its variation with changes of gear parameters[J]. Applied Mechanics and Materials, 2011, 121-126: 2211-2217. doi: 10.4028/www.scientific.net/AMM.121-126.2211
    [7] 董飞飞, 邵忍平, 王伟. 齿轮参数对三维裂纹应力强度因子影响的研究[J]. 应用力学学报, 2012, 29(6): 723-729.

    DONG F F, SHAO R P, WANG W. The research on the influence of gear parameters on the stress intensity factors of three-dimensional crack[J]. Chinese Journal of Applied Mechanics, 2012, 29(6): 723-729. (in Chinese)
    [8] 裴未迟, 楚京, 纪宏超, 等. 基于Abaqus的直齿圆柱齿轮疲劳裂纹应力强度因子研究[J]. 机械传动, 2019, 43(2): 8-12.

    PEI W C, CHU J, JI H C, et al. Research of stress intensity factor of fatigue crack of spur gear based on Abaqus[J]. Journal of Mechanical Transmission, 2019, 43(2): 8-12. (in Chinese)
    [9] 杨生华. 采掘机械齿轮轮齿断裂过程仿真与断裂强度[J]. 煤矿机电, 2004(5): 35-38.

    YANG S H. The fracture process simulation and fracture strength of gear tooth in mining machine[J]. Colliery Mechanical & Electrical Technology, 2004(5): 35-38. (in Chinese)
    [10] 许德涛, 唐进元, 周炜. 基于扩展有限元法的齿根裂纹扩展规律[J]. 中南大学学报(自然科学版), 2016, 47(8): 2668-2675.

    XU D T, TANG J Y, ZHOU W. Tooth root crack propagation regularity based on extended finite element method[J]. Journal of Central South University (Science and Technology), 2016, 47(8): 2668-2675. (in Chinese)
    [11] WU X R, CARLSSON A J. Weight functions and stress intensity factor solutions[M]. Oxford: Pergamon Press, 1991.
    [12] 于耀庭, 何芝仙, 陈曦. 基于权函数法的齿根裂纹应力强度因子求解[J]. 机械设计, 2020, 37(9): 71-77.

    YU Y T, HE Z X, CHEN X. Solving the stress intensity factor of cracked dedendum based on the weight function method[J]. Journal of Machine Design, 2020, 37(9): 71-77. (in Chinese)
    [13] ZHAO W, WU X R, YAN M G. Weight function method for three dimensional crack problems-I basic formulation and application to anembedded elliptical crack in finite plates[J]. Engineering Fracture Mechanics, 1989, 34(3): 593-607. doi: 10.1016/0013-7944(89)90122-7
    [14] 于耀庭, 何芝仙, 时培成. 能量法计算齿根具有裂纹的齿轮啮合刚度[J]. 机械科学与技术, 2021, 40(5): 716-720.

    YU Y T, HE Z X, SHI P C. Calculation of gear mesh stiffness of cracked dedendum via energy method[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(5): 716-720. (in Chinese)
    [15] 李皓月, 周田鹏, 刘相新. ANSYS工程计算应用教程[M]. 北京: 中国铁道出版社, 2003.

    LI H Y, ZHOU T P, LIU X X. ANSYS engineering calculation application tutorial[M]. Beijing: China Railway Publishing House, 2003. (in Chinese)
    [16] 鲁丽君, 李明, 刘建平. 基于ANSYS软件的三维裂纹实体建模方法[J]. 济南大学学报(自然科学版), 2017, 31(4): 292-296.

    LU L J, LI M, LIU J P. Solid modeling method for three-dimensional crack based on ANSYS software[J]. Journal of University of Jinan (Science and Technology), 2017, 31(4): 292-296. (in Chinese)
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  64
  • HTML全文浏览量:  26
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-01
  • 刊出日期:  2023-11-30

目录

    /

    返回文章
    返回