留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种改进CycleGAN的水下彩色图像增强方法

刘朝 王红茹

刘朝,王红茹. 一种改进CycleGAN的水下彩色图像增强方法[J]. 机械科学与技术,2023,42(12):2093-2099 doi: 10.13433/j.cnki.1003-8728.20220162
引用本文: 刘朝,王红茹. 一种改进CycleGAN的水下彩色图像增强方法[J]. 机械科学与技术,2023,42(12):2093-2099 doi: 10.13433/j.cnki.1003-8728.20220162
LIU Zhao, WANG Hongru. An Improved Underwater Color Image Enhancement Algorithm Based on CycleGAN[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(12): 2093-2099. doi: 10.13433/j.cnki.1003-8728.20220162
Citation: LIU Zhao, WANG Hongru. An Improved Underwater Color Image Enhancement Algorithm Based on CycleGAN[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(12): 2093-2099. doi: 10.13433/j.cnki.1003-8728.20220162

一种改进CycleGAN的水下彩色图像增强方法

doi: 10.13433/j.cnki.1003-8728.20220162
基金项目: 国家重点研发计划项目(2018YFC0309100)
详细信息
    作者简介:

    刘朝(1994−),硕士研究生,研究方向为图像处理与机器视觉,374466828@qq.com

    通讯作者:

    王红茹,副教授,硕士生导师,wanghr@126.com

  • 中图分类号: TP391.9

An Improved Underwater Color Image Enhancement Algorithm Based on CycleGAN

  • 摘要: 针对基于深度学习方法的水下图像增强只考虑水下图像的RGB 颜色特征空间造成的增强效果不理想现象,本文在循环生成对抗网络的基础上改进了一种水下彩色图像增强算法。首先运用循环生成对抗网络在图像的RGB和HSV 颜色特征空间进行训练,将图像经过卷积网络下采样提取到的特征送入残差网络和扩展压缩模块,其中扩展压缩模块可以调整图像RGB 和HSV 通道的权重。预训练好的生成对抗网络作用在成对的水下降质图像与增强后的图像进行监督训练,采用特征融合网络将对抗生成网络输出的RGB 和HSV 六通道图像融合成RGB三通道图像。实验结果表明,该方法能够有效结合图像的RGB和HSV 空间的特征信息,提升水下图像的对比度和亮度,校正水下图像的颜色偏差。
  • 图  1  本文算法流程

    Figure  1.  Procedures of the Proposed Algorithm

    图  2  循环生成对抗网络结构

    Figure  2.  The Structure of the Cycle GAN

    图  3  生成网络结构

    Figure  3.  The Architeture of Generative Network

    图  4  残差和压缩扩展模块

    Figure  4.  Residual and Compression Expansion Module

    图  5  判别器网络结构

    Figure  5.  The Architeture of Discriminator Network

    图  6  特征融合网络

    Figure  6.  The Architeture of Feature Fuson Network

    图  7  本文算法和其他算法增强效果

    Figure  7.  Experimental Results of the Different Image Enhancement Algorithms

    表  1  增强图像的指标对比

    Table  1.   Performance parameters for enhanced images with different image enhancing algorithms

    方法MSE/103PSNR/dBSSIM
    Retinex-based 1.2924 17.0168 0.6071
    Dense GAN 1.7298 15.7058 0.521
    Water Cycle GAN 1.2152 17.2843 0.4426
    Fusion-based 1.128 17.6077 0.7721
    Ours 1.1681 18.4355 0.6808
    下载: 导出CSV
  • [1] WANG Y, ZHANG J, CAO Y, et al. A deep CNN method for underwater image enhancement[C]//2017 IEEE International Conference on Image Processing (ICIP). Beijing: IEEE, 2017: 1382-1386.
    [2] LI C Y, GUO C L, REN W Q, et al. An underwater image enhancement benchmark dataset and beyond[J]. IEEE Transactions on Image Processing, 2020, 29: 4376-4389. doi: 10.1109/TIP.2019.2955241
    [3] LI J, SKINNER K A, EUSTICE R M, et al. WaterGAN: unsupervised generative network to enable real-time color correction of monocular underwater images[J]. IEEE Robotics and Automation Letters, 2018, 3(1): 387-394.
    [4] GUO Y C, LI H Y, ZHUANG P X. Underwater image enhancement using a multiscale dense generative adversarial network[J]. IEEE Journal of Oceanic Engineering, 2020, 45(3): 862-870. doi: 10.1109/JOE.2019.2911447
    [5] LI C Y, GUO J C, GUO C L. Emerging from water: underwater image color correction based on weakly supervised color transfer[J]. IEEE Signal Processing Letters, 2018, 25(3): 323-327. doi: 10.1109/LSP.2018.2792050
    [6] MEJJATI Y A, RICHARDT C, TOMPKIN J, et al. Unsupervised attention-guided image-to-image translation[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. Montréal: Curran Associates Inc. , 2018: 3697-3707.
    [7] 李庆忠, 白文秀, 牛炯. 基于改进CycleGAN的水下图像颜色校正与增强[J]. 自动化学报, 2023, 49(4): 820-829.

    LI Q Z, BAI W X, NIU J. Underwater image color correction and enhancement based on improved cycle-consistent generative adversarial networks[J]. Acta Automatica Sinica, 2023, 49(4): 820-829. (in Chinese)
    [8] 杨亚绒, 李恒, 赵磊, 等. 改进的同态滤波与多尺度融合的水下图像增强[J]. 机械科学与技术, 2022, 41(8): 1231-1239. doi: 10.13433/j.cnki.1003-8728.20200455

    YANG Y R, LI H, ZHAO L, et al. Improved homomorphic filtering and multi-scale fusion method for underwater image enhancement[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(8): 1231-1239. (in Chinese) doi: 10.13433/j.cnki.1003-8728.20200455
    [9] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal: MIT Press, 2014: 2672-2680.
    [10] ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2242-2251.
    [11] ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein GAN[J]. Machine Learning, 2017, 3: 1701-1732.
    [12] EDWARDS D A. On the Kantorovich-Rubinstein theorem[J]. Expositiones Mathematicae, 2011, 29(4): 387-398. doi: 10.1016/j.exmath.2011.06.005
    [13] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large scale image recognition[J]. Computer Science, 2014, 1(6): 1-14.
    [14] FU X Y, ZHUANG P X, HUANG Y, et al. A retinex-based enhancing approach for single underwater image[C]//2014 IEEE International Conference on Image Processing (ICIP). Paris: IEEE, 2014: 4572-4576.
    [15] ANCUTI C, ANCUTI C O, HABER T, et al. Enhancing underwater images and videos by fusion[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence: IEEE, 2012: 81-88.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  127
  • HTML全文浏览量:  29
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-18
  • 刊出日期:  2023-12-25

目录

    /

    返回文章
    返回