留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蝴蝶优化算法的移动机器人全局路径规划研究

马小陆 梅宏 谭毅波 龚瑞 王兵

马小陆,梅宏,谭毅波, 等. 蝴蝶优化算法的移动机器人全局路径规划研究[J]. 机械科学与技术,2023,42(12):2085-2092 doi: 10.13433/j.cnki.1003-8728.20220160
引用本文: 马小陆,梅宏,谭毅波, 等. 蝴蝶优化算法的移动机器人全局路径规划研究[J]. 机械科学与技术,2023,42(12):2085-2092 doi: 10.13433/j.cnki.1003-8728.20220160
MA Xiaolu, MEI Hong, TAN Yibo, GONG Rui, WANG Bing. Research on Global Path Planning for Mobile Robot with Improved Butterfly Optimization Algorithm[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(12): 2085-2092. doi: 10.13433/j.cnki.1003-8728.20220160
Citation: MA Xiaolu, MEI Hong, TAN Yibo, GONG Rui, WANG Bing. Research on Global Path Planning for Mobile Robot with Improved Butterfly Optimization Algorithm[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(12): 2085-2092. doi: 10.13433/j.cnki.1003-8728.20220160

蝴蝶优化算法的移动机器人全局路径规划研究

doi: 10.13433/j.cnki.1003-8728.20220160
基金项目: 国家自然科学基金项目(61472282)、安徽省科技重大专项(202003a05020028)、安徽高校自然科学研究重点项目(KJ2019A0065)、安徽省重点研究开发计划项目(202004a0502001)及特种重载机器人安徽省重点实验室开放课题(TZJQR004-2020)
详细信息
    作者简介:

    马小陆(1979−),副教授,硕士生导师,博士后,研究方向为嵌入式、车联网和服务机器人,77578249@qq.com

  • 中图分类号: TP242.6

Research on Global Path Planning for Mobile Robot with Improved Butterfly Optimization Algorithm

  • 摘要: 针对移动机器人路径规划问题提出了一种改进的蝴蝶优化算法。将蝴蝶优化算法与栅格法相结合,并对两种方法结合后的算法进行了具体说明;引入了禁忌表和回溯法,解决了算法在路径寻优中无后续扩展节点的问题;结合三次B样条曲线将路径规划中的最优节点作为控制点进行平滑输出,使移动机器人实际运动路径更加平滑。通过仿真实验,将改进算法与蚁群算法、遗传算法进行比较,证实了改进算法能够有效解决路径规划问题。将改进算法应用到实际的基于ROS的移动机器人上,实验结果证明了改进算法的有效性和可行性。
  • 图  1  栅格法建立的环境

    Figure  1.  Environment established with the grid method

    图  2  回溯法解决蝴蝶陷入“假死”状态

    Figure  2.  Backtracking to solve the deadlock of a butterfly

    图  3  简单环境下3种算法路径规划仿真结果

    Figure  3.  Simulation results of three algorithms path planning under simple environment

    图  4  简单环境下3种算法最短路径长度变化曲线

    Figure  4.  Change curve of the shortest path length of three algorithms under simple environment

    图  5  一般环境下3种算法路径规划仿真结果

    Figure  5.  Path planning simulation data of three algorithms under general environment

    图  6  一般环境下3种算法最短路径长度变化曲线

    Figure  6.  Change curve of the shortest path length of three algorithms under general environment

    图  7  复杂环境下3种算法路径规划仿真结果

    Figure  7.  Path planning simulation results of three algorithms under complicated environment

    图  8  复杂环境下3种算法最短路径长度变化曲线

    Figure  8.  Change curve of the shortest path length of three algorithms under complex environment

    图  9  移动机器人实物图

    Figure  9.  Mobile robot's physical drawing

    图  10  ROS导航系统框架

    Figure  10.  Framework of ROS navigation system

    图  11  不同目标点下BOSA的路径规划

    Figure  11.  Path planning of BOSA under different target points

    表  1  ACO参数设置

    Table  1.   ACO parameter settings

    参数数值
    信息启发式因子α 1
    期望启发式因子β 7
    信息素挥发系数ρ 0.3
    初始信息素浓度Q 1
    下载: 导出CSV

    表  2  GA参数设置

    Table  2.   GA parameter settings

    参数数值
    交叉概率pc0.65
    变异概率pm0.01
    下载: 导出CSV

    表  3  BOSA参数设置

    Table  3.   BOSA parameter settings

    参数数值
    转换概率P 0.8
    蝴蝶感官形态c0 0.01
    幂指数a 0.1
    下载: 导出CSV

    表  4  简单环境下3种算法仿真数据对比

    Table  4.   Comparison of simulation data of three algorithms under simple environment

    算法最小值最大值平均值收敛迭代次数
    ACO 30.38 46.04 33.25 56
    GA 30.38 75.70 34.66 36
    BOSA 29.64 45.11 31.86 32
    下载: 导出CSV

    表  5  一般环境下3种算法仿真数据对比

    Table  5.   Comparison of simulation data of three algorithms under general environment

    算法最小值最大值平均值收敛迭代次数
    ACO 29.80 45.70 33.10 72
    GA 29.80 102.28 39.72 37
    BOSA 28.48 47.94 30.95 29
    下载: 导出CSV

    表  6  复杂环境下3种算法仿真数据对比

    Table  6.   Comparison of simulation data of three algorithms under complex environment

    算法最小值最大值平均值迭代次数
    ACO 30.97 50.04 34.21 66
    GA 31.56 106.28 40.92 45
    BOSA 28.82 51.11 32.38 39
    下载: 导出CSV

    表  7  两个目标点的路径长度和寻路时间

    Table  7.   Path lengths and search time of two target points

    参数目标点1目标点2
    路径长度/m 4.18 7.42
    寻路时间/ms 352.7 617.3
    下载: 导出CSV
  • [1] SALOMON R. Re-evaluating genetic algorithm performance under coordinate rotation of benchmark functions. A survey of some theoretical and practical aspects of genetic algorithms[J]. Biosystems, 1996, 39(3): 263-278. doi: 10.1016/0303-2647(96)01621-8
    [2] 魏勇, 赵开新, 王东署. 改进粒子群算法在移动机器人路径规划中的应用[J]. 火力与指挥控制, 2018, 43(2): 41-43. doi: 10.3969/j.issn.1002-0640.2018.02.009

    WEI Y, ZHAO K X, WANG D S. Application of improved particle swarm optimization algorithm in path planning of mobile robot[J]. Fire Control & Command Control, 2018, 43(2): 41-43. (in Chinese) doi: 10.3969/j.issn.1002-0640.2018.02.009
    [3] KARABOGA D, BASTURK B. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm[J]. Journal of Global Optimization, 2007, 39(3): 459-471. doi: 10.1007/s10898-007-9149-x
    [4] 李丽娜, 郭永强, 张晓东, 等. 萤火虫算法结合人工势场法的机器人路径规划[J]. 计算机工程与应用, 2018, 54(20): 104-109. doi: 10.3778/j.issn.1002-8331.1801-0043

    LI L N, GUO Y Q, ZHANG X D, et al. Path planning algorithm for robot based on firefly algorithm combined with artificial potential field method[J]. Computer Engineering and Applications, 2018, 54(20): 104-109. (in Chinese) doi: 10.3778/j.issn.1002-8331.1801-0043
    [5] 马小铭, 靳伍银. 基于改进蚁群算法的多目标路径规划研究[J]. 计算技术与自动化, 2020, 39(4): 100-105. doi: 10.16339/j.cnki.jsjsyzdh.202004018

    MA X M, JIN W Y. Mulit-objcctive path planning based on improved and colony algorithm[J]. Computing Technology and Automation, 2020, 39(4): 100-105. (in Chinese) doi: 10.16339/j.cnki.jsjsyzdh.202004018
    [6] ARORA S, SINGH S. Butterfly optimization algorithm: a novel approach for global optimization[J]. Soft Computing, 2019, 23(3): 715-734. doi: 10.1007/s00500-018-3102-4
    [7] ARORA S, SINGH S. An effective hybrid butterfly optimization algorithm with artificial bee colony for numerical optimization[J]. International Journal of Interactive Multimedia and Artificial Intelligence, 2017, 4(4): 14-21. doi: 10.9781/ijimai.2017.442
    [8] ARORA S, SINGH S. An improved butterfly optimization algorithm for global optimization[J]. Advanced Science, Engineering and Medicine, 2016, 8(9): 711-717. doi: 10.1166/asem.2016.1904
    [9] ARORA S, SINGH S. Butterfly algorithm with Lèvy flights for global optimization[C]//Proceedings of 2015 International Conference on Signal Processing, Computing and Control. Waknaghat: IEEE, 2015: 220-224.
    [10] 高文欣, 刘升, 肖子雅, 等. 全局优化的蝴蝶优化算法[J]. 计算机应用研究, 2020, 37(10): 2966-2970. doi: 10.19734/j.issn.1001-3695.2019.07.0274

    GAO W X, LIU S, XIAO Z Y, et al. Butterfly optimization algorithm for global optimization[J]. Application Research of Computers, 2020, 37(10): 2966-2970. (in Chinese) doi: 10.19734/j.issn.1001-3695.2019.07.0274
    [11] 孙林, 陈岁岁, 徐久成, 等. 基于交叉迁移和共享调整的改进蝴蝶优化算法[J]. 计算机应用研究, 2020, 37(3): 799-804. doi: 10.19734/j.issn.1001-3695.2018.07.0611

    SUN L, CHEN S S, XU J C, et al. Improved monarch butterfly optimization algorithm based on cross migration and sharing adjustment[J]. Application Research of Computers, 2020, 37(3): 799-804. (in Chinese) doi: 10.19734/j.issn.1001-3695.2018.07.0611
    [12] 谢聪, 封宇. 一种改进的蝴蝶优化算法[J]. 数学的实践与认识, 2020, 50(13): 105-115.

    XIE C, FENG Y. An improved butterfly optimization algorithm[J]. Mathematics in Practice and Theory, 2020, 50(13): 105-115. (in Chinese)
    [13] 王依柔, 张达敏. 融合正弦余弦和无限折叠迭代混沌映射的蝴蝶优化算法[J]. 模式识别与人工智能, 2020, 33(7): 660-669. doi: 10.16451/j.cnki.issn1003-6059.202007008

    WANG Y R, ZHANG D M. Butterfly optimization algorithm combining sine cosine and iterative chaotic map with infinite collapses[J]. Pattern Recognition and Artificial Intelligence, 2020, 33(7): 660-669. (in Chinese) doi: 10.16451/j.cnki.issn1003-6059.202007008
    [14] 何娟, 涂中英, 牛玉刚. 一种遗传蚁群算法的机器人路径规划方法[J]. 计算机仿真, 2010, 27(3): 170-174. doi: 10.3969/j.issn.1006-9348.2010.03.042

    HE J, TU Z Y, NIU Y G. A method of mobile robotic path planning based on integrating of GA and ACO[J]. Computer Simulation, 2010, 27(3): 170-174. (in Chinese) doi: 10.3969/j.issn.1006-9348.2010.03.042
    [15] 王仲民, 井平安, 朱博. 基于神经元激励的移动机器人遍历路径规划[J]. 控制工程, 2017, 24(2): 283-286. doi: 10.14107/j.cnki.kzgc.150267

    WANG Z M, JING P A, ZHU B. Coverage path planning of mobile robot based on neuronal excitation[J]. Control Engineering of China, 2017, 24(2): 283-286. (in Chinese) doi: 10.14107/j.cnki.kzgc.150267
    [16] 崔东文. 改进蝴蝶优化算法-投影寻踪模型在区域河长制考核评价中的应用[J]. 三峡大学学报(自然科学版), 2019, 41(5): 12-18. doi: 10.13393/j.cnki.issn.1672-948x.2019.05.003

    CUI D W. Application of improved butterfly optimization algorithm-projection pursuit model to regional river chief system[J]. Journal of China Three Gorges University (Natural Sciences), 2019, 41(5): 12-18. (in Chinese) doi: 10.13393/j.cnki.issn.1672-948x.2019.05.003
    [17] 李田来, 刘方爱. 带混沌映射的WSN蝴蝶优化定位算法[J]. 计算机工程与设计, 2019, 40(6): 1729-1733. doi: 10.16208/j.issn1000-7024.2019.06.040

    LI T L, LIU F A. Butterfly optimization localization algorithm with chaotic map in wireless sensor networks[J]. Computer Engineering and Design, 2019, 40(6): 1729-1733. (in Chinese) doi: 10.16208/j.issn1000-7024.2019.06.040
  • 加载中
图(11) / 表(7)
计量
  • 文章访问数:  88
  • HTML全文浏览量:  35
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-13
  • 刊出日期:  2023-12-25

目录

    /

    返回文章
    返回