留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

柔索驱动拣矸机器人抓取轨迹规划研究

乔心州 龚莉 刘鹏

乔心州,龚莉,刘鹏. 柔索驱动拣矸机器人抓取轨迹规划研究[J]. 机械科学与技术,2023,42(12):1986-1995 doi: 10.13433/j.cnki.1003-8728.20220158
引用本文: 乔心州,龚莉,刘鹏. 柔索驱动拣矸机器人抓取轨迹规划研究[J]. 机械科学与技术,2023,42(12):1986-1995 doi: 10.13433/j.cnki.1003-8728.20220158
QIAO Xinzhou, GONG Li, LIU Peng. On Trajectory Planning for a Cable-driven Gangue Sorting Robot[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(12): 1986-1995. doi: 10.13433/j.cnki.1003-8728.20220158
Citation: QIAO Xinzhou, GONG Li, LIU Peng. On Trajectory Planning for a Cable-driven Gangue Sorting Robot[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(12): 1986-1995. doi: 10.13433/j.cnki.1003-8728.20220158

柔索驱动拣矸机器人抓取轨迹规划研究

doi: 10.13433/j.cnki.1003-8728.20220158
基金项目: 陕西省自然科学基础研究计划项目(2019JQ-796)
详细信息
    作者简介:

    乔心州(1974−),副教授,博士,研究方向为结构可靠性,qiaoxinzhou@xust.edu.cn

    通讯作者:

    刘鹏,讲师,博士,liupeng@xust.edu.cn

  • 中图分类号: TP242.3

On Trajectory Planning for a Cable-driven Gangue Sorting Robot

  • 摘要: 依据矸石分拣过程和特点,提出一种柔索驱动拣矸机器人的抓取轨迹规划方案。建立柔索驱动拣矸机器人运动学模型,仿真分析验证了模型的正确性,为末端抓斗的运动轨迹是否符合索长变化规律提供判定依据。根据矸石与皮带运输机同步运动的特性、矸石仓位置及拣矸机器人工作空间几何中心受力最佳等条件,将末端抓斗的抓取轨迹规划为启动段、准备段、抓矸段和置矸段;并针对各段不同的运动特点,采用S型速度曲线和五次多项式组合的轨迹规化方法,对末端抓斗的四段运动进行规划。对规划的轨迹方案进行仿真,结果表明,末端抓斗的运动轨迹、速度和加速度连续,索长变化光滑连续,且轨迹参数能适应矸石在皮带运输机上的不同分布情况。
  • 图  1  柔索驱动拣矸机器人结构

    Figure  1.  Structure of cable-driven gangue sorting robot

    图  2  柔索驱动拣矸机器人运动学模型

    Figure  2.  Kinematics model of cable-driven gangue sorting robot

    图  3  末端抓斗轨迹

    Figure  3.  Trajectory of an end grab

    图  4  索长变化曲线

    Figure  4.  Length change curves of cables

    图  5  矸石分布区域(单位:m)

    Figure  5.  Gangue distribution area

    图  6  B区末端抓斗运动轨迹规划方案(单位:m)

    Figure  6.  Planning scheme of grasping trajectory in the end of B area

    图  7  五段式${\rm{S}}$型速度与加速度曲线

    Figure  7.  Five-section S-type velocity and accelerating curves

    图  8  i = 0.25 m末端抓斗轨迹、速度和加速度仿真结果

    Figure  8.  Simulation results of end grasping trajectory, velocity and acceleration when i = 0.25 m

    图  9  i = 0.25 m索长变化

    Figure  9.  Change of cable lengths when i = 0.25 m

    图  10  i = 0 末端抓斗轨迹、速度和加速度仿真结果

    Figure  10.  Simulation results of end grasping trajectory, velocity and acceleration when i = 0

    图  11  i = 0索长变化

    Figure  11.  Change of cable lengths when i = 0

    表  1  各段轨迹规划方法

    Table  1.   Trajectory planning method for each stage

    阶段方向采用的轨迹规划方法
    启动段CDx五次多项式
    yS型速度曲线
    z无位移
    准备段DEx无位移
    yS型速度曲线
    z无位移
    抓矸段EFx五次多项式
    y五次多项式
    z五次多项式
    抓矸段FGx无位移
    yS型速度曲线
    z五次多项式
    置矸段GDx五次多项式
    y五次多项式
    z无位移
    下载: 导出CSV

    表  2  五次多项式轨迹规划参数

    Table  2.   Quintic polynomial trajectory planning parameters

    阶段五次多项式参数
    $q_0/{\rm{m}}$$\dot q_0/({\rm{m\cdot s}}^{-1}) $$\ddot q_0/({\rm{m\cdot s}}^{-2}) $$q_t/{\rm{m}} $$\dot q_t/({\rm{m\cdot s}}^{-1}) $$\ddot q_t/({\rm{m\cdot s}}^{-2}) $
    CD$x_c=0 $$\dot x_c=0 $$\ddot x_c=0 $$ x_D=0 $$\dot x_D=0 $$\ddot x_D=0 $
    EF$x_E =0.25 $$\dot x_E =0 $$\ddot x_E =0 $$ x_F =1 $$\dot x_F =0 $$\ddot x_F =0 $
    $y_E=0 $$\dot y_E=1 $$\ddot y_E=0 $$y_F=1-\sqrt {5} $$\dot y_F=-1 $$\ddot y_F=0 $
    ${\textit{z}}_E=1.5 $$\dot {\textit{z}}_E=0 $$\ddot {\textit{z}}_E=0 $$ {\textit{z}}_F=1.8 $$\dot {\textit{z}}_F=0 $$\ddot {\textit{z}}_F=0 $
    FG$ {\textit{z}}_F=1.8 $$\dot {\textit{z}}_F=0 $$\ddot {\textit{z}}_F=0 $${\textit{z}}_G= 1.5$$\dot {\textit{z}}_G= 0$$\ddot {\textit{z}}_G= 0 $
    GD$ x_G= 1 $$\dot x_G= 0 $$\ddot x_G= 0 $$\dot x_D= 0.25 $$\dot x_G= 0 $$\ddot x_G= 0 $
    $ y_G= 0 $$\dot y_G=-1 $$\ddot y_G=0 $$ y_D=\sqrt{5}-1 $$\dot y_D= 1$$\ddot y_D= 0 $
    下载: 导出CSV

    表  3  i = 0.25 m时${\rm{ S}}$型速度曲线规划段参数

    Table  3.   Parameters of S-type velocity curve planningstage when i=0.25

    阶段S型速度曲线规划参数
    $ {v_{\max }}/( {{\rm{m\cdot s}}}^{-1} ) $$ a/( {{\rm{m}}\cdot{{\rm{s}}^{-2}}} ) $$ J/( {{\rm{m}}\cdot{{\rm{s}}^{-3}}} ) $
    $ CD $$ {v_{y\max }} = 1 $$ {a_y} = \sqrt 5 $$ {J_y} = 5 $
    $ DE $$ {v_{y\max }} = 1 $$ {a_y} = \sqrt 5 $$ {J_y} = 5 $
    $ FG $$ {v_{y\max }} = - 1 $$ {a_y} = - \sqrt 5 $$ {J_y} = - 5 $
    下载: 导出CSV

    表  4  i = 0时五次多项式规划调整参数

    Table  4.   Parameters of quintic polynomial planning stage when i=0

    阶段五次多项式参数
    $ {q_0} $/${\rm{m}} $$ \dot q_0 $/$ ( {{\rm{m\cdot s}}}^{-1} ) $$ \ddot q_0 $/$ ( {{\rm{m}}\cdot{{\rm{s}}^{-2}}} ) $$ {q_t} $/$ {\rm{m}} $$ \dot q_t $/$ ( {{\rm{m\cdot s}}}^{-1} ) $$ \ddot q_t $/$ ( {{\rm{m}}\cdot{{\rm{s}}^{-2}}} ) $
    CDx方向无位移,无需五次多项式规划
    EF$ {x_E} = 0 $$ {\dot x _E} = 0 $$ {\ddot x _E} = 0 $$ {x_F} = 0 $$ {\dot x _F} = 0 $$ {\ddot x _F} = 0 $
    GD$ {x_G} = 0 $$ {\dot x _G} = 0 $$ {\ddot x _G} = 0 $$ {x_D} = 0 $$ {\dot x _D} = 0 $$ {\ddot x _D} = 0 $
    下载: 导出CSV
  • [1] ZHAO Y M, YANG X L, LUO Z F, et al. Progress in developments of dry coal beneficiation[J]. International Journal of Coal Science & Technology, 2014, 1(1): 103-112.
    [2] MA D, DUAN H Y, LIU J F, et al. The role of gangue on the mitigation of mining-induced hazards and environmental pollution: an experimental investigation[J]. Science of the Total Environment, 2019, 664: 436-448. doi: 10.1016/j.scitotenv.2019.02.059
    [3] 陈俊涛, 于恒江, 徐德永. 龙湖选煤厂原煤车间排矸方式的改造[J]. 煤矿机械, 2003(8): 87-88. doi: 10.3969/j.issn.1003-0794.2003.08.045

    CHEN J T, YU H J, XU D Y. The reform of gangue-ejection way of oral coal shop in Longhu Coal Preparation Plant[J]. Coal Mine Machinery, 2003(8): 87-88. (in Chinese) doi: 10.3969/j.issn.1003-0794.2003.08.045
    [4] 荆响, 赵书宁. 原煤预排矸工艺与设备的选择[J]. 煤炭加工与综合利用, 2014(3): 32-34. doi: 10.3969/j.issn.1005-8397.2014.03.009

    JING X, ZHAO S N. Selection of raw coal pre-discharge process and equipment[J]. Coal Processing & Comprehensive Utilization, 2014(3): 32-34. (in Chinese) doi: 10.3969/j.issn.1005-8397.2014.03.009
    [5] 康利, 黄金辉, 刘畅. GDRT型γ射线智能干法分选系统在六家煤矿的应用[J]. 煤炭加工与综合利用, 2017(3): 22-24.

    KANG L, HUANG J H, LIU C. Application of GDRT type γ-ray intelligent dry separation system in Liujia coal mine[J]. Coal Processing & Comprehensive Utilization, 2017(3): 22-24. (in Chinese)
    [6] 赵宏霞, 丁芳亮. KRS-智能干法分选系统在矿物分选中的应用[J]. 煤炭加工与综合利用, 2016(9): 24-26.

    ZHAO H X, DING F L. Application of KRS-intelligent dry separation system in mineral separation[J]. Coal Processing & Comprehensive Utilization, 2016(9): 24-26. (in Chinese)
    [7] 高明. 塔山选煤厂原煤准备车间技术改造[J]. 选煤技术, 2015(3): 43-45.

    GAO M. Technical modification on raw coal prepared plant of Tashan coal preparation plant[J]. Coal Preparation Technology, 2015(3): 43-45. (in Chinese)
    [8] 訾斌, 段宝岩, 黄进. 大射电望远镜馈源柔索支撑系统的建模与控制[J]. 西安交通大学学报, 2006, 40(6): 681-685. doi: 10.3321/j.issn:0253-987X.2006.06.015

    ZI B, DUAN B Y, HUANG J. Modeling and control of the feed cable-supporting system for large spherical radio telescope[J]. Journal of Xi'an Jiaotong University, 2006, 40(6): 681-685. (in Chinese) doi: 10.3321/j.issn:0253-987X.2006.06.015
    [9] 于亮亮, 仇原鹰, 苏宇. 高速柔索牵引摄像机器人动力工作空间研究[J]. 工程力学, 2013, 30(11): 245-250.

    YU L L, QIU Y Y, SU Y. Dynamic workspace of a high-speed cable-driven camera robot[J]. Engineering Mechanics, 2013, 30(11): 245-250. (in Chinese)
    [10] 宋达, 张立勋, 王炳军, 等. 柔索牵引式力觉交互机器人控制策略[J]. 机器人, 2018, 40(4): 440-447.

    SONG D, ZHANG L X, WANG B J, et al. The control strategy of flexible cable driven force interactive robot[J]. Robot, 2018, 40(4): 440-447. (in Chinese)
    [11] 刘鹏, 马宏伟, 乔心州, 等. 柔索驱动拣矸机器人最小索拉力等值曲面研究[J]. 西安科技大学学报, 2020, 40(5): 797-804.

    LIU P, MA H W, QIAO X Z, et al. On the contour surfaces of minimum tensions for a cable-driven coal-gangue picking robot[J]. Journal of Xi′an University of Science and Technology, 2020, 40(5): 797-804. (in Chinese)
    [12] 谢少荣, 刘思淼, 罗均, 等. 一种混合驱动柔索并联仿生眼的轨迹规划[J]. 机器人, 2015, 37(4): 395-402.

    XIE S R, LIU S M, LUO J, et al. Trajectory planning of a bionic eye using hybrid-driven cable parallel mechanism[J]. Robot, 2015, 37(4): 395-402. (in Chinese)
    [13] 范伟, 彭光正, 高建英, 等. 气动人工肌肉驱动球面并联机器人的位置控制研究[J]. 北京理工大学学报, 2004, 24(6): 516-519.

    FAN W, PENG G Z, GAO J Y, et al. A study on the position control of a spherical parallel robot actuated by pneumatic muscle actuators[J]. Transactions of Beijing Institute of Technology, 2004, 24(6): 516-519. (in Chinese)
    [14] 洪逸凡, 谭建平. 基于柔索驱动的锅炉检测机器人轨迹规划研究[J]. 传感器与微系统, 2021, 40(7): 25-27.

    HONG Y F, TAN J P. Study on trajectory planning of cable-driven robot for boiler detection[J]. Transducer and Microsystem Technologies, 2021, 40(7): 25-27. (in Chinese)
    [15] QIAO S, BAO K L, ZI B, et al. Dynamic trajectory planning for a three degrees-of-freedom cable-driven parallel robot using quintic b-splines[J]. Journal of Mechanical Design, 2020, 142(7): 073301. doi: 10.1115/1.4045723
    [16] ZHAO T, ZI B, QIAN S, et al. Algebraic method-based point-to-point trajectory planning of an under-constrained cable-suspended parallel robot with variable angle and height cable mast[J]. Chinese Journal of Mechanical Engineering, 2020, 33(1): 54. doi: 10.1186/s10033-020-00473-z
    [17] XU J J, PARK K S. Moving obstacle avoidance for cable-driven parallel robots using improved RRT[J]. Microsystem Technologies, 2021, 27(6): 2281-2292. doi: 10.1007/s00542-020-05100-4
    [18] 黄佳怡, 陈柏, 胡忠文, 等. 一种柔索驱动太空舱外搬运机器人研究[J]. 机械科学与技术, 2012, 31(11): 1748-1753. doi: 10.13433/j.cnki.1003-8728.2012.11.010

    HUANG J Y, CHEN B, HU Z W, et al. A cable-driven extravehicular transport robot analysis[J]. Mechanical Science and Technology for Aerospace Engineering, 2012, 31(11): 1748-1753. (in Chinese) doi: 10.13433/j.cnki.1003-8728.2012.11.010
    [19] GARRIDO J, YU W, LI X O. Robot trajectory generation using modified hidden Markov model and Lloyd's algorithm in joint space[J]. Engineering Applications of Artificial Intelligence, 2016, 53: 32-40. doi: 10.1016/j.engappai.2016.03.006
    [20] 温贻芳, 孙立宁, 徐朋. 表面改性冗余机器人关节空间的轨迹优化算法[J]. 机械科学与技术, 2018, 37(12): 1870-1874. doi: 10.13433/j.cnki.1003-8728.20180081

    WEN Y F, SUN L N, XU P. Trajectory optimization algorithm for joint space of a surface modified redundant robot[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(12): 1870-1874. (in Chinese) doi: 10.13433/j.cnki.1003-8728.20180081
    [21] FRANCISCO V, VICENTE M, ANTONIO B. Trajectory planning in workspaces with obstacles taking into account the dynamic robot behaviour[J]. Mechanism and Machine Theory, 2006, 41(5): 525-536. doi: 10.1016/j.mechmachtheory.2005.08.002
    [22] ANDULKAR M V, CHIDDARWAR S S, MARATHE A S. Novel integrated offline trajectory generation approach for robot assisted spray painting operation[J]. Journal of Manufacturing Systems, 2015, 37: 201-216. doi: 10.1016/j.jmsy.2015.03.006
    [23] 北京起重运输机械设计研究院, 武汉丰凡科技开发有限责任公司. DTⅡ(A)型带式输送机设计手册[M]. 2版. 北京: 冶金工业出版社, 2013.

    Beijing Crane Transportation Machinery Design Institute, Wuhan Fengfan Technology Development Co., Ltd. Type DTⅡ(A) belt conveyor drawings manual for designing[M]. 2nd ed. Beijing: Metallurgical Industry Press, 2013. (in Chinese)
    [24] 李振娜, 王涛, 王斌锐, 等. 基于带约束S型速度曲线的机械手笛卡尔空间轨迹规划[J]. 智能系统学报, 2019, 14(4): 655-661. doi: 10.11992/tis.201806025

    LI Z N, WANG T, WANG B R, et al. Trajectory planning for manipulator in Cartesian space based on constrained S-curve velocity[J]. CAAI Transactions on Intelligent Systems, 2019, 14(4): 655-661. (in Chinese) doi: 10.11992/tis.201806025
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  82
  • HTML全文浏览量:  30
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-07
  • 刊出日期:  2023-12-25

目录

    /

    返回文章
    返回