留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种二维时频多尺度熵的滚动轴承故障诊断方法

李嘉绮 郑近德 潘海洋 童靳于

李嘉绮,郑近德,潘海洋, 等. 一种二维时频多尺度熵的滚动轴承故障诊断方法[J]. 机械科学与技术,2023,42(12):2011-2020 doi: 10.13433/j.cnki.1003-8728.20220157
引用本文: 李嘉绮,郑近德,潘海洋, 等. 一种二维时频多尺度熵的滚动轴承故障诊断方法[J]. 机械科学与技术,2023,42(12):2011-2020 doi: 10.13433/j.cnki.1003-8728.20220157
LI Jiaqi, ZHENG Jinde, PAN Haiyang, TONG Jinyu. A Two-dimensional Time-frequency Multi-scale Entropy Method for Rolling Bearing Fault Diagnosis[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(12): 2011-2020. doi: 10.13433/j.cnki.1003-8728.20220157
Citation: LI Jiaqi, ZHENG Jinde, PAN Haiyang, TONG Jinyu. A Two-dimensional Time-frequency Multi-scale Entropy Method for Rolling Bearing Fault Diagnosis[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(12): 2011-2020. doi: 10.13433/j.cnki.1003-8728.20220157

一种二维时频多尺度熵的滚动轴承故障诊断方法

doi: 10.13433/j.cnki.1003-8728.20220157
基金项目: 国家自然科学基金项目(51975004)与安徽省自然科学基金项目(2008085QE215)
详细信息
    作者简介:

    李嘉绮(1996−),硕士研究生,研究方向为设备状态监测与故障诊断,735028407@qq.com

    通讯作者:

    郑近德,副教授,硕士生导师,博士,lqdlzheng@126.com

  • 中图分类号: TN911.7;TH165.3

A Two-dimensional Time-frequency Multi-scale Entropy Method for Rolling Bearing Fault Diagnosis

  • 摘要: 多尺度熵是一种有效表征一维振动信号复杂性和不规则程度的非线性动力学方法,但其只考虑了信号的时域复杂性,而忽略了频域信息。为了综合利用振动信号时频域信息和量度时频分布的复杂性特征,将二维多尺度熵引入到滚动轴承的故障诊断中,提出了一种基于二维时频多尺度熵和萤火虫算法优化支持向量机的滚动轴承故障诊断方法。首先,采用连续小波变换将一维时间序列转换为时频图像;其次,计算时频图像的二维多尺度熵值;再次,将得到的二维多尺度熵值输入到萤火虫优化的支持向量机中进行分类和预测;最后,通过滚动轴承试验数据分析验证所提方法的有效性。结果表明:论文所提方法能够准确地识别滚动轴承的故障类型和故障程度。
  • 图  1  尺度因子$ \tau = 2 $时二维粗粒化示意图

    Figure  1.  Two-dimensional coarse-grained schematic diagram for $\tau = 2 $

    图  2  FA-SVM流程图

    Figure  2.  The flow chart of FA-SVM

    图  3  MIX2Dp )生成的示例图像

    Figure  3.  Sample images generated by MIX2D(p)

    图  4  MIX2Dp)像素为256 × 256时不同p值的TFMSE2D

    Figure  4.  TFMSE2D with different p for 256×256 pixels generated by MIX2D(p)

    图  5  1/f噪声和MIX2D混合过程的TFMSE2D值曲线

    Figure  5.  TFMSE2D curve of 1/f noise and MIX2D(p)

    图  6  滚动轴承试验测试台(西储大学)

    Figure  6.  The rolling bearing test bench of Case Western Reserve University

    图  7  滚动轴承振动信号的时域波形图

    Figure  7.  Time domain waveform of vibration signal of a rolling bearing

    图  8  4种不同方法的均值方差图

    Figure  8.  The mean variances of four different methods

    图  9  4种不同故障诊断方法的分类结果

    Figure  9.  Classification results of four different fault diagnosis methods

    图  10  安徽工业大学轴承试验测试台

    Figure  10.  Bearing test bench of Anhui University of Technology

    图  11  滚动轴承振动信号的时域波形图

    Figure  11.  Time domain waveform of vibration signal of a rolling bearing

    图  12  TFMSE2D均值方差图

    Figure  12.  The mean variances of TFMSE2D

    图  13  基于TFMSE2D的故障诊断方法分类结果

    Figure  13.  Classification results of fault diagnosis method based on TFMSE2D

    图  14  MSE1D均值方差图

    Figure  14.  The mean variances of MSE1D

    图  15  基于MSE1D的故障诊断方法分类结果

    Figure  15.  Classification results of fault diagnosis method based on MSE1D

    图  16  MPE1D均值方差图

    Figure  16.  The mean variances of MPE1D

    图  17  基于MPE1D的故障诊断方法分类结果

    Figure  17.  Classification results of fault diagnosis method based on MPE1D

    图  18  MFE1D均值方差图

    Figure  18.  The mean variances of MFE1D

    图  19  基于MFE1D的故障诊断方法分类结果

    Figure  19.  Classification results of fault diagnosis method based on MFE1D

    表  1  不同方法的参数及识别率

    Table  1.   Parameters and recognition rate of different methods

    方法参数设置最优参数识别率/%
    TFMSE2D m=2
    r=0.25
    c=34.3589
    g=0.9373
    100
    MSE1D m=2
    r=0.25
    c=74.1677
    g=18.7573
    100
    MPE1D m=2
    λ=1
    c=29.0371
    g=31.6586
    100
    MFE1D m=2
    r=0.15
    n=2
    c=28.5010
    g=6.9890
    100
    下载: 导出CSV

    表  2  不同方法的参数及识别率

    Table  2.   Parameters and recognition rates of different methods

    方法参数设置最优参数识别率/%
    TFMSE2D m=2
    r=0.25
    c=26.3190
    g=1.0245
    100
    MSE1D m=2
    r=0.25
    c=46.9301
    g=10.5754
    97.619
    MPE1D m=2
    λ=1
    c=11.2882
    g=60.1983
    95.2381
    MFE1D m=2
    r=0.15
    n=2
    c=19.7435
    g=2.5664
    98.4172
    下载: 导出CSV
  • [1] 胥永刚, 何正嘉. 分形维数和近似熵用于度量信号复杂性的比较研究[J]. 振动与冲击, 2003, 22(3): 25-27. doi: 10.3969/j.issn.1000-3835.2003.03.007

    XU Y G, HE Z J. Research on comparison between approximate entropy and fractal dimension for complexity measure of signals[J]. Journal of Vibration and Shock, 2003, 22(3): 25-27. (in Chinese) doi: 10.3969/j.issn.1000-3835.2003.03.007
    [2] 何志坚, 周志雄. 基于ELMD的样本熵及Boosting-SVM的滚动轴承故障诊断[J]. 振动与冲击, 2016, 35(18): 190-195.

    HE Z J, ZHOU Z X. Fault diagnosis of roller bearings based on ELMD sample entropy and Boosting-SVM[J]. Journal of Vibration and Shock, 2016, 35(18): 190-195. (in Chinese)
    [3] 刘慧, 谢洪波, 和卫星, 等. 基于模糊熵的脑电睡眠分期特征提取与分类[J]. 数据采集与处理, 2010, 25(4): 484-489.

    LIU H, XIE H B, HE W X, et al. Characterization and classification of EEG sleep stage based on fuzzy entropy[J]. Journal of Data Acquisition & Processing, 2010, 25(4): 484-489. (in Chinese)
    [4] PINCUS S M. Approximate entropy as a measure of system complexity[J]. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88(6): 2297-2301. doi: 10.1073/pnas.88.6.2297
    [5] 赵志宏, 杨绍普. 基于小波包变换与样本熵的滚动轴承故障诊断[J]. 振动、测试与诊断, 2012, 32(4): 640-644.

    ZHAO Z H, YANG S P. Roller bearing fault diagnosis based on wavelet packet transform and sample entropy[J]. Journal of Vibration, Measurement & Diagnosis, 2012, 32(4): 640-644. (in Chinese)
    [6] 郑近德, 程军圣, 胡思宇. 多尺度熵在转子故障诊断中的应用[J]. 振动、测试与诊断, 2013, 33(2): 294-297.

    ZHENG J D, CHENG J S, HU S Y. Rotor fault diagnosis based on multiscale entropy[J]. Journal of Vibration, Measurement & Diagnosis, 2013, 33(2): 294-297. (in Chinese)
    [7] ZHENG J D, PAN H Y, TONG J Y, et al. Generalized refined composite multiscale fuzzy entropy and multi-cluster feature selection based intelligent fault diagnosis of rolling bearing[J]. ISA Transactions, 2022, 123: 136-151. doi: 10.1016/j.isatra.2021.05.042
    [8] 郑近德, 程军圣, 杨宇. 多尺度排列熵及其在滚动轴承故障诊断中的应用[J]. 中国机械工程, 2013, 24(19): 2641-2646. doi: 10.3969/j.issn.1004-132X.2013.19.017

    ZHENG J D, CHENG J S, YANG Y. Multi-scale permutation entropy and its applications to rolling bearing fault diagnosis[J]. China Mechanical Engineering, 2013, 24(19): 2641-2646. (in Chinese) doi: 10.3969/j.issn.1004-132X.2013.19.017
    [9] SILVA L E V, FILHO A C S S, FAZAN V P S, et al. Two-dimensional sample entropy: assessing image texture through irregularity[J]. Biomedical Physics & Engineering Express, 2016, 2(4): 045002.
    [10] AZAMI H, DA SILVA L E V, OMOTO A C M, et al. Two-dimensional dispersion entropy: an information-theoretic method for irregularity analysis of images[J]. Signal Processing:Image Communication, 2019, 75: 178-187. doi: 10.1016/j.image.2019.04.013
    [11] SILVA L E V, DUQUE J J, FELIPE J C, et al. Two-dimensional multiscale entropy analysis: applications to image texture evaluation[J]. Signal Processing, 2018, 147: 224-232. doi: 10.1016/j.sigpro.2018.02.004
    [12] 刘佳敏, 赵知劲, 曹越飞, 等. 基于时频分析的多跳频信号盲检测[J]. 信号处理, 2021, 37(5): 763-771.

    LIU J M, ZHAO Z J, CAO Y F, et al. Blind detection of multi-frequency hopping signals based on time-frequency analysis[J]. Journal of Signal Processing, 2021, 37(5): 763-771. (in Chinese)
    [13] 杨晓敏. 改进灰狼算法优化支持向量机的网络流量预测[J]. 电子测量与仪器学报, 2021, 35(3): 211-217.

    YANG X M. Improved gray wolf algorithm to optimize support vector machine for network traffic prediction[J]. Journal of Electronic Measurement and Instrumentation, 2021, 35(3): 211-217. (in Chinese)
    [14] 李宝胜, 秦传东. 基于粒子群优化的SVM多分类的电动车价格预测研究[J]. 计算机科学, 2020, 47(11A): 421-424.

    LI B S, QIN C D. Study on electric vehicle price prediction based on PSO-SVM multi-classification Method[J]. Computer Science, 2020, 47(11A): 421-424. (in Chinese)
    [15] 张兢, 曾建梅, 李冠迪, 等. FA-SVM优化算法在情感识别中的应用[J]. 激光杂志, 2016, 37(9): 76-79.

    ZHANG J, ZENG J M, LI G D, et al. Application of FA-SVM optimization algorithm in emotion recognition[J]. Laser Journal, 2016, 37(9): 76-79. (in Chinese)
    [16] YANG X S. Firefly algorithms for mutimodal optimizatiom[M]. Sapporo: Springer, 2009.
    [17] 董治麟, 郑近德, 潘海洋, 等. 基于复合多尺度排列熵与FO-SVM的滚动轴承故障诊断方法[J]. 噪声与振动控制, 2020, 40(2): 102-108. doi: 10.3969/j.issn.1006-1355.2020.02.019

    DONG Z L, ZHENG J D, PAN H Y, et al. Fault diagnosis for rolling bearings based on composite multi-scale permutation entropy and FO-SVM[J]. Noise and Vibration Control, 2020, 40(2): 102-108. (in Chinese) doi: 10.3969/j.issn.1006-1355.2020.02.019
    [18] WU H C, ZHOU J, XIE C H, et al. Two-dimensional time series sample entropy algorithm: applications to rotor axis orbit feature identification[J]. Mechanical Systems and Signal Processing, 2021, 147: 107-123.
    [19] RICHMAN J S, MOORMAN J R. Physiological time-series analysis using approximate entropy and sample entropy[J]. American Journal of Physiology-Heart and Circulatory Physiology, 2000, 278(6): H2039-H2049. doi: 10.1152/ajpheart.2000.278.6.H2039
    [20] HILAL M, BERTHIN C, MARTIN L, et al. Bidimensional multiscale fuzzy entropy and its application to pseudoxanthoma elasticum[J]. IEEE Transactions on Biomedical Engineering, 2020, 67(7): 2015-2022. doi: 10.1109/TBME.2019.2953681
    [21] Bearing Data Center Website. Case western reserve university[DB/OL]. [2017-06-20]. http://www.eecs.cwru.edu/laboratory/bearing.
  • 加载中
图(19) / 表(2)
计量
  • 文章访问数:  690
  • HTML全文浏览量:  23
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-08
  • 刊出日期:  2023-12-25

目录

    /

    返回文章
    返回