留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改进连续隐马尔可夫模型的有杆抽油故障诊断

王东宇 刘宏昭 任慧

王东宇,刘宏昭,任慧. 改进连续隐马尔可夫模型的有杆抽油故障诊断[J]. 机械科学与技术,2023,42(12):1959-1966 doi: 10.13433/j.cnki.1003-8728.20220155
引用本文: 王东宇,刘宏昭,任慧. 改进连续隐马尔可夫模型的有杆抽油故障诊断[J]. 机械科学与技术,2023,42(12):1959-1966 doi: 10.13433/j.cnki.1003-8728.20220155
WANG Dongyu, LIU Hongzhao, REN Hui. Fault Diagnosis of Sucker Rod Pumping System Using Improved Continuous Hidden Markov Model[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(12): 1959-1966. doi: 10.13433/j.cnki.1003-8728.20220155
Citation: WANG Dongyu, LIU Hongzhao, REN Hui. Fault Diagnosis of Sucker Rod Pumping System Using Improved Continuous Hidden Markov Model[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(12): 1959-1966. doi: 10.13433/j.cnki.1003-8728.20220155

改进连续隐马尔可夫模型的有杆抽油故障诊断

doi: 10.13433/j.cnki.1003-8728.20220155
基金项目: 国家自然科学基金项目(51275404)与陕西省“13115”重大科技专项(2009ZDKGG-33)
详细信息
    作者简介:

    王东宇(1987−),博士研究生,研究方向为有杆抽油系统动力学分析及故障诊断,dongyu-wang@qq.com

    通讯作者:

    刘宏昭,教授,博士生导师,liu-hongzhao@163.com

  • 中图分类号: TE933.3; TH165.3

Fault Diagnosis of Sucker Rod Pumping System Using Improved Continuous Hidden Markov Model

  • 摘要: 利用人工智能诊断有杆抽油系统故障时,描述工况的示功图成为机器学习的对象,提取示功图特征和建立诊断模型是主要步骤。已有的依据阀门工作位置的几何特征未能直接反映示功图的面积,因此提出一组改进的训练特征,并采用连续隐马尔可夫模型(CHMM)建立诊断模型。为了使参数的初始化更可靠,使用与混合高斯模型相关联的K-means聚类算法。将本文提出的诊断方法用于真实油井的示功图集进行测试,结果表明,本文方法不仅有效,而且改进的训练特征和建模方法都提高了诊断的准确率。
  • 图  1  理论示功图

    Figure  1.  Theoretical dynamometer diagram

    图  2  基于重心分区的示功图

    Figure  2.  Dynamometer diagram based on center of gravity segmentation

    图  3  KB-CHMM训练流程图

    Figure  3.  Flow chart of KB-CHMM training

    图  4  有杆抽油故障诊断框架图

    Figure  4.  Fault diagnosis framework of sucker rod pumping system

    表  1  训练数据集

    Table  1.   Training data set

    编号工况类型示功图数量
    1正常20
    2气体影响32
    3供液不足28
    4固定阀漏16
    5游动阀漏24
    6油管漏22
    7油杆断32
    总数174
    下载: 导出CSV

    表  2  训练示功图几何特征的平均值

    Table  2.   Average value of geometric features for training dynamometers

    工况几何特征
    SABCDSL-upSR-upSR-downSL-downDBCDDA
    正常68.478.386.7511.145.518.277.83
    气体影响60.367.088.5823.454.358.295.14
    供液不足51.705.545.8833.708.818.723.02
    固定阀漏62.417.488.579.523.859.118.08
    游动阀漏63.289.755.855.115.328.849.50
    油管漏54.168.9720.077.859.5210.310.1
    油杆断28.8229.529.863.673.599.509.65
    下载: 导出CSV

    表  3  实测示功图诊断结果

    Table  3.   Diagnostic results of measured dynamometers

    诊断工况
    实际工况
    正常气体
    影响
    供液
    不足
    固定
    阀漏
    游动
    阀漏
    油管漏油杆断
    正常5000000
    气体影响1600000
    供液不足0060000
    固定阀漏0006000
    游动阀漏0000600
    油管漏0000060
    油杆断0000006
    下载: 导出CSV

    表  4  KB-CHMM诊断方法与其他诊断方法的对比

    Table  4.   Comparison of KB-CHMM diagnostic method with other diagnostic methods

    方法训练的几何特征
    曲线矩文献[13]本文提出
    HMM 64.2% 71.4% 75.2%
    CHMM 71.4% 82.1% 83.6%
    CSA-CHMM 82.1% 94.1% 96.2%
    KB-CHMM 83.9% 96.2% 97.6%
    下载: 导出CSV
  • [1] 萧河. 2020年全球能源需求将出现70年最大降幅[J]. 中国石化, 2020(5): 86.

    XIAO H. Global energy demand will show the largest decline in 70 years in 2020[J]. Sinopec Monthly, 2020(5): 86. (in Chinese)
    [2] 贾承造. 中国石油工业上游发展面临的挑战与未来科技攻关方向[J]. 石油学报, 2020, 41(12): 1445-1464.

    JIA C Z. Development challenges and future scientific and technological researches in China's petroleum industry upstream[J]. Acta Petrolei Sinica, 2020, 41(12): 1445-1464. (in Chinese)
    [3] 李阳, 廉培庆, 薛兆杰, 等. 大数据及人工智能在油气田开发中的应用现状及展望[J]. 中国石油大学学报(自然科学版), 2020, 44(4): 1-11.

    LI Y, LIAN P Q, XUE Z J, et al. Application status and prospect of big data and artificial intelligence in oil and gas field development[J]. Journal of China University of Petroleum, 2020, 44(4): 1-11. (in Chinese)
    [4] 张凯, 赵兴刚, 张黎明, 等. 智能油田开发中的大数据及智能优化理论和方法研究现状及展望[J]. 中国石油大学学报(自然科学版), 2020, 44(4): 28-38.

    ZHANG K, ZHAO X G, ZHANG L M, et al. Current status and prospect for the research and application of big data and intelligent optimization methods in oilfield development[J]. Journal of China University of Petroleum, 2020, 44(4): 28-38. (in Chinese)
    [5] 杨剑锋, 杜金虎, 杨勇, 等. 油气行业数字化转型研究与实践[J]. 石油学报, 2021, 42(2): 248-258.

    YANG J F, DU J H, YANG Y, et al. Research and practice on digital transformation of the oil and gas industry[J]. Acta Petrolei Sinica, 2021, 42(2): 248-258. (in Chinese)
    [6] 曾涛, 刘晗光, 高坚. 斯伦贝谢公司数字化转型的经验与启示[J]. 国际石油经济, 2021, 29(1): 94-99.

    ZENG T, LIU H G, GAO J. Experience and inspiration from Schlumberger's digital transition[J]. International Petroleum Economics, 2021, 29(1): 94-99. (in Chinese)
    [7] 张朝林, 范玉刚. CEEMD与卷积神经网络特征提取的故障诊断方法研究[J]. 机械科学与技术, 2019, 38(2): 178-183.

    ZHANG Z L, FAN Y G. Fault diagnosis of a bearing using feature extraction method based on CEEMD algorithm and CNN[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(2): 178-183. (in Chinese)
    [8] HOANG D T, KANG H J. A survey on deep learning based bearing fault diagnosis[J]. Neurocomputing, 2019, 335: 327-335. doi: 10.1016/j.neucom.2018.06.078
    [9] LI K, HAN Y, WANG T. A novel prediction method for down-hole working conditions of the beam pumping unit based on 8-directions chain codes and online sequential extreme learning machine[J]. Journal of Petroleum Science and Engineering, 2018, 160: 285-301. doi: 10.1016/j.petrol.2017.10.052
    [10] LI K, GAO X W, ZHOU H B, et al. Fault diagnosis for down-hole conditions of sucker rod pumping systems based on the FBH-SC method[J]. Petroleum Science, 2015, 12(1): 135-147. doi: 10.1007/s12182-014-0006-5
    [11] 高银中, 雷小强, 杨江天. 基于泵示功图的抽油机井井口产量计算[J]. 石油矿场机械, 2008, 37(5): 88-92.

    GAO Y Z, LEI X Q, YANG J T. Production evaluation of oil wells using dynamometer card[J]. Oil Field Equipment, 2008, 37(5): 88-92. (in Chinese)
    [12] LIANG H, LI X M. Accurate extraction of valve opening and closing points based on the physical meaning of surface dynamometer card[J]. Petroleum Exploration and Development, 2011, 38(1): 109-115. doi: 10.1016/S1876-3804(11)60018-9
    [13] ZHENG B Y, GAO X W. Sucker rod pumping diagnosis using valve working position and parameter optimal continuous hidden Markov model[J]. Journal of Process Control, 2017, 59: 1-12. doi: 10.1016/j.jprocont.2017.09.007
    [14] 周斌, 王延江, 刘伟锋, 等. 基于Hessian正则化支持向量机的多视角协同识别抽油机井工况方法[J]. 石油学报, 2018, 39(12): 1429-1436.

    ZHOU B, WANG Y J, LIU W F, et al. A working condition recognition method of sucker-rod pumping wells based on Hessian-regularized SVM and multi-view co-training algorithm[J]. Acta Petrolei Sinica, 2018, 39(12): 1429-1436. (in Chinese)
    [15] XU P, XU S J, YIN H W. Application of self-organizing competitive neural network in fault diagnosis of suck rod pumping system[J]. Journal of Petroleum Science and Engineering, 2007, 58(1-2): 43-48. doi: 10.1016/j.petrol.2006.11.008
    [16] YUWONO M, QIN Y, ZHOU J, et al. Automatic bearing fault diagnosis using particle swarm clustering and Hidden Markov Model[J]. Engineering Applications of Artificial Intelligence, 2016, 47: 88-100. doi: 10.1016/j.engappai.2015.03.007
    [17] HUANG D R, KE L Y, CHU X Y, et al. Fault diagnosis for the motor drive system of urban transit based on improved Hidden Markov Model[J]. Microelectronics Reliability, 2018, 82: 179-189. doi: 10.1016/j.microrel.2018.01.017
    [18] 肖文斌. 基于耦合隐马尔可夫模型的滚动轴承故障诊断与性能退化评估研究[D]. 上海: 上海交通大学, 2011: 30.

    XIAO W B. Study on coupled hidden Markov model based rolling element bearing fault diagnosis and performance degradation assessment[D]. Shanghai: Shanghai Jiao Tong University, 2011: 30. (in Chinese)
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  137
  • HTML全文浏览量:  39
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-02
  • 刊出日期:  2023-12-25

目录

    /

    返回文章
    返回