留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水膜压力监测节点非接触供电耦合机构研究

赵一帆 王楠 张楠 江帆 岳晓奎

赵一帆, 王楠, 张楠, 江帆, 岳晓奎. 水膜压力监测节点非接触供电耦合机构研究[J]. 机械科学与技术, 2023, 42(10): 1712-1718. doi: 10.13433/j.cnki.1003-8728.20220148
引用本文: 赵一帆, 王楠, 张楠, 江帆, 岳晓奎. 水膜压力监测节点非接触供电耦合机构研究[J]. 机械科学与技术, 2023, 42(10): 1712-1718. doi: 10.13433/j.cnki.1003-8728.20220148
ZHAO Yifan, WANG Nan, ZHANG Nan, JIANG Fan, YUE Xiaokui. Research on Coupling Mechanism of Contactless Power Supply System for Water Film Pressure Monitoring Node[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(10): 1712-1718. doi: 10.13433/j.cnki.1003-8728.20220148
Citation: ZHAO Yifan, WANG Nan, ZHANG Nan, JIANG Fan, YUE Xiaokui. Research on Coupling Mechanism of Contactless Power Supply System for Water Film Pressure Monitoring Node[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(10): 1712-1718. doi: 10.13433/j.cnki.1003-8728.20220148

水膜压力监测节点非接触供电耦合机构研究

doi: 10.13433/j.cnki.1003-8728.20220148
基金项目: 

国家自然科学基金项目 51605269

陕西省高校青年杰出人才支持计划项目 SLGQD1802

陕西理工大学重点培育项目 SLG2102

详细信息
    作者简介:

    赵一帆(1998-),硕士研究生,研究方向为无线电能传输理论及应用,zyfdcz@163.com

    通讯作者:

    王楠,副教授,硕士生导师,heroyoyu@126.com

  • 中图分类号: TH39

Research on Coupling Mechanism of Contactless Power Supply System for Water Film Pressure Monitoring Node

  • 摘要: 水润滑轴承水膜压力无线监测节点同轴安装、随轴高速旋转,因此对其供电成为一大难题。针对上述问题,提出一种非接触供电方法,建立了耦合机构物理模型及其等效电路,并进行特性分析;然后,对耦合机构原、副边电路进行补偿,并对其输出功率及效率进行仿真;最后通过试验进行验证。结果表明:仿真与试验结果具有较好一致性,该耦合机构在SP补偿后平均输出功率为10.332 W,传输效率为69.84%,能够满足无线监测节点非接触供电需要。
  • 图  1  水润滑轴承水膜压力试验台

    Figure  1.  Test-rig of film pressure for water-lubricated bearings

    图  2  无线监测节点非接触供电方法

    Figure  2.  Contactless power supply method for wireless monitoring node

    图  3  非接触供电系统

    Figure  3.  Contactless power supply system

    图  4  非接触供电耦合机构

    Figure  4.  Coupling mechanisms of contactless power supply

    图  5  耦合机构互感等效电路模型

    Figure  5.  Reciprocal inductance equivalent circuit model of coupling mechanisms

    图  6  轴向位移下磁感强度及磁感线分布

    Figure  6.  Distribution of magnetic inductance intensity and magnetic inductance line under axial displacement

    图  7  轴向位移下互感、漏感及耦合系数变化

    Figure  7.  Change of mutual inductance, leakage inductance and coupling coefficient under axial displacement

    图  8  径向偏移下互感、漏感及耦合系数变化

    Figure  8.  Change of mutual inductance, leakage inductance and coupling coefficient under radial migration

    图  9  两种基本补偿拓扑

    Figure  9.  Two basic compensation topologies

    图  10  两种基本补偿拓扑及无补偿下输出功率

    Figure  10.  Two basic compensation topologies and output power without compensation

    图  11  耦合机构试验系统

    Figure  11.  Coupling mechanism test system

    图  12  耦合机构测试试验现场

    Figure  12.  Test site of coupling mechanism

    图  13  测试系统标定曲线

    Figure  13.  Calibration curve of test system

    图  14  耦合机构轴向相对位置变化下输出电压有效值

    Figure  14.  RMS values of output voltage when the axial relative position of coupling mechanisms changes

    图  15  SP补偿下的负载端电压电流波形

    Figure  15.  Voltage and current waveform of load terminal under SP compensation

    表  1  联合仿真参数值

    Table  1.   Co-simulation parameter values

    参数 数值 参数 数值
    Uin 15 V f 20 kHz
    Lp 94.962 μH Ls 75.557 μH
    M 52.039 μH RL 25 Ω
    Cp.ss 0.667 μF Cs.ss 0.838 μF
    Cp.sp 0.653 μF Cs.sp 0.838 μF
    下载: 导出CSV

    表  2  试验系统参数值

    Table  2.   Parameter values of test system

    参数 数值 参数 数值
    Uin 15 V f 20 kHz
    Lp 98 μH Ls 72 μH
    M 59.5 μH RL 25 Ω
    RLp 0.9 Ω RLs 0.8 Ω
    Cp.sp 0.625 μF Cs.sp 0.879 μF
    下载: 导出CSV
  • [1] WANG N, YUAN Z, WANG P. Dynamic electromagnetic force variation mechanism and energy loss of a non-contact loading device for a water-lubricated bearing[J]. Journal of Mechanical Science and Technology, 2021, 35(6): 2645-2656. doi: 10.1007/s12206-021-0535-y
    [2] OUYANG W, CHENG Q C, JIN Y, et al. Lubrication performance distribution of large aspect ratio water-lubricated bearings considering deformation and shaft bending[J]. Tribology Transactions, 2021, 64(4): 730-743. doi: 10.1080/10402004.2021.1913538
    [3] 王楠, 杨利涛, 梁应选, 等. 非接触式电磁加载水润滑轴承监测系统[J]. 中国机械工程, 2019, 30(24): 3004-3009. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX201924017.htm

    WANG N, YANG L T, LIANG Y X, et al. Non-contact electromagnetic loading monitoring system for water-lubricated bearings[J]. China Mechanical Engineering, 2019, 30(24): 3004-3009. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX201924017.htm
    [4] 戚天博, 王楠, 杨利涛. 水润滑轴承水膜压力无线监测节点供电方法研究[J]. 中国测试, 2021, 47(2): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS202102003.htm

    QI T B, WANG N, YANG L T. Research on power supply methods for wireless monitoring node of water-film pressure in water-lubricated bearing[J]. China Measurement & Test, 2021, 47(2): 13-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS202102003.htm
    [5] 王方哲, 朱永生, 闫柯, 等. 滚动轴承内圈温度无线监测技术[J]. 机械工程学报, 2018, 54(22): 8-14. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201822002.htm

    WANG F Z, ZHU Y S, YAN K, et al. Wireless monitoring technology of rolling bearing inner ring temperature[J]. Journal of Mechanical Engineering, 2018, 54(22): 8-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201822002.htm
    [6] ZHANG Y M, CHEN S X, LI X, et al. Design methodology of free-positioning nonoverlapping wireless charging for consumer electronics based on antiparallel windings[J]. IEEE Transactions on Industrial Electronics, 2022, 69(1): 825-834. doi: 10.1109/TIE.2020.3048322
    [7] KATHIRVELU K P, SANDEEP G G V, SWATHI J, et al. Design of transformer for wireless power transfer in electric vehicles[J]. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 2021, 45(4): 1311-1324. doi: 10.1007/s40998-021-00441-w
    [8] 张献, 王杰, 杨庆新, 等. 电动汽车动态无线供电系统电能耦合机构与切换控制研究[J]. 电工技术学报, 2019, 34(15): 3093-3101. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201915001.htm

    ZHANG X, WANG J, YANG Q X, et al. The power coupling mechanism and switching control for dynamic wireless power supply system of electric vehicle[J]. Transactions of China Electrotechnical Society, 2019, 34(15): 3093-3101. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201915001.htm
    [9] JIANG Y, CHEN K N, ZHAO Z M, et al. Designing an M-shape magnetic coupler for the wireless charging system in railway applications[J]. IEEE Transactions on Power Electronics, 2022, 37(1): 1059-1073. doi: 10.1109/TPEL.2021.3072248
    [10] LUO B, LONG T, GUO L M, et al. Analysis and design of inductive and capacitive hybrid wireless power transfer system for railway application[J]. IEEE Transactions on Industry Applications, 2020, 56(3): 3034-3042.
    [11] 程为彬, 王洋, 康思民, 等. 井下定功率高效无线电能传输系统的分析与设计[J]. 电源学报, 2022, 20(2): 183-191. https://www.cnki.com.cn/Article/CJFDTOTAL-DYXB202202021.htm

    CHENG W B, WANG Y, KANG S M, et al. Analysis and design of downhole rated power and high efficiency wireless power transmission system[J]. Journal of Power Supply, 2022, 20(2): 183-191. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DYXB202202021.htm
    [12] XIN X Y, JACKSON D R, CHEN J. Wireless power transfer along oil pipe using ferrite materials[J]. IEEE Transactions on Magnetics, 2017, 53(3): 9200205.
    [13] WANG D A, CUI S M, BIE Z, et al. A redundancy design of wireless power transfer system for satellite slip ring with high reliability[C]//Proceedings of the IEEE 4th International Electrical and Energy Conference (CIEEC). Wuhan, China: IEEE, 2021: 1-6.
    [14] SONG K, MA B Q, YANG G, et al. A rotation-lightweight wireless power transfer system for solar wing driving[J]. IEEE Transactions on Power Electronics, 2019, 34(9): 8816-8830.
    [15] SOFIA A, TAVILLA A C, GARDENGHI R, et al. Power transfer for rotating medical machine[C]//Proceedings of the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Orlando, FL, USA: IEEE, 2016: 2137-2140.
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  52
  • HTML全文浏览量:  50
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-05
  • 刊出日期:  2023-10-25

目录

    /

    返回文章
    返回