留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电池包箱体跌落挤压动力学分析与结构优化

许莎 陈浩 杨亚莉 蔡丽红

许莎, 陈浩, 杨亚莉, 蔡丽红. 电池包箱体跌落挤压动力学分析与结构优化[J]. 机械科学与技术, 2023, 42(10): 1617-1624. doi: 10.13433/j.cnki.1003-8728.20220145
引用本文: 许莎, 陈浩, 杨亚莉, 蔡丽红. 电池包箱体跌落挤压动力学分析与结构优化[J]. 机械科学与技术, 2023, 42(10): 1617-1624. doi: 10.13433/j.cnki.1003-8728.20220145
XU Sha, CHEN Hao, YANG Yali, CAI Lihong. Drop & Extrusion Analysis and Structural Optimization of Battery Pack Box[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(10): 1617-1624. doi: 10.13433/j.cnki.1003-8728.20220145
Citation: XU Sha, CHEN Hao, YANG Yali, CAI Lihong. Drop & Extrusion Analysis and Structural Optimization of Battery Pack Box[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(10): 1617-1624. doi: 10.13433/j.cnki.1003-8728.20220145

电池包箱体跌落挤压动力学分析与结构优化

doi: 10.13433/j.cnki.1003-8728.20220145
基金项目: 

上海市曙光计划项目 19SG51

详细信息
    作者简介:

    许莎(1977-), 讲师, 博士, 研究方向为汽车轻量化与可靠性设计, xytongxing376@sina.com

    通讯作者:

    陈浩, 教授, 博士, pschenhao@163.com

  • 中图分类号: U469.72

Drop & Extrusion Analysis and Structural Optimization of Battery Pack Box

  • 摘要: 为改善电池包箱体的耐冲击性能, 以某款物流车动力电池包为研究对象, 综合考虑电池包的跌落和挤压问题, 分析了不同跌落高度、跌落角度以及不同挤压方向工况下电池包箱体的动力学响应。根据分析结果, 以电池包箱体安全性能作为优化目的, 以电池包箱体尺寸参数作为设计变量, 对电池包箱体进行了多目标尺寸优化, 并通过跌落试验验证了优化效果。结果表明, 优化后电池包箱体的强度得到了提高, 动力学响应满足跌落和挤压工况的要求, 验证了本文电池包动力学分析与结构优化方法的正确性。
  • 图  1  电池包箱体跌落模型

    Figure  1.  Drop model of a battery pack box

    图  2  不同跌落高度的等效应力

    Figure  2.  Equivalent stress at different drop heights

    图  3  不同跌落角度的等效应力

    Figure  3.  Equivalent stress at different drop angles

    图  4  电池包箱体挤压模型

    Figure  4.  Extrusion model of a battery pack box

    图  5  电池包箱体挤压分析的等效应力

    Figure  5.  Equivalent stress of battery pack box extrusion

    图  6  吊耳变形

    Figure  6.  Deformation of lifting lug

    图  7  下箱体变形

    Figure  7.  Deformation of a lower box

    图  8  电池包箱体跌落云图

    Figure  8.  Contours of battery pack box drop

    图  9  电池包箱体挤压云图

    Figure  9.  Contours of battery pack box extrusion

    图  10  预处理

    Figure  10.  Pretreatment

    图  11  跌落试验

    Figure  11.  Drop Test

    表  1  材料基本参数

    Table  1.   Basic parameters of materials

    名称 密度/(t·mm-3) 弹性模量/MPa 泊松比
    箱体 7.89×10-9 2.1×105 0.3
    模组 2.1×10-9 7 000 0.32
    下载: 导出CSV

    表  2  跌落优化前后对比

    Table  2.   Comparison before and after drop optimization

    名称 优化前 优化后
    上箱体厚度/mm 2.00 1.2
    下箱体厚度/mm 2.00 2.97
    最大等效应力/MPa 331.60 329.88
    最大有效塑性应变 0.24 0.19
    总重量/t 0.390 0.389
    下载: 导出CSV

    表  3  挤压优化前后对比

    Table  3.   Comparison before and after extrusion optimization

    名称 优化前 优化后
    上箱体厚度/mm 2 1.43
    下箱体厚度/mm 2 2.73
    吊耳厚度/mm 2 3.85
    最大等效应力/MPa 301.2 298.97
    最大有效塑性应变 0.8 0.74
    下箱体侵入量/mm 20.3 16.31
    下载: 导出CSV

    表  4  电池包前10阶固有频率

    Table  4.   The first ten natural frequencies of the battery pack box Hz

    阶数 优化前 优化后 主要振型 变化量
    1 22.2 37.0 模组和隔板共振 +14.8
    2 24.6 39.2 上箱体共振 +14.6
    3 28.6 39.2 上箱体共振 +10.6
    4 29.5 41.1 隔板共振 +11.6
    5 29.6 43.7 隔板共振加重 +14.1
    6 29.7 43.8 隔板共振 +14.4
    7 29.8 44.2 隔板共振加重 +14.4
    8 29.9 44.6 隔板共振加重 +14.7
    9 30.1 44.8 隔板共振减小 +14.7
    10 30.1 45.2 隔板共振 +15.1
    下载: 导出CSV
  • [1] 樊彬, 王芳, 刘仕强. 一种电池包跌落实验装置的研制及应用[J]. 电源技术, 2017, 41(1): 38-40. doi: 10.3969/j.issn.1002-087X.2017.01.012

    FAN B, WANG F, LIU S Q. Development and application of drop test equipment for battery pack[J]. Chinese Journal of Power Sources, 2017, 41(1): 38-40. (in Chinese) doi: 10.3969/j.issn.1002-087X.2017.01.012
    [2] HARTMANN M, ROSCHITZ M, KHALIL Z. Enhanced battery pack for electric vehicle: Noise reduction and increased stiffness[J]. Materials Science Forum, 2013, 765: 818-822. doi: 10.4028/www.scientific.net/MSF.765.818
    [3] WANG L, CHEN X K, ZHAO Q H. Muti-objective topology optimization of an electric vehicle's traction battery enclosure[J]. Energy Procedia, 2016, 88: 874-880. doi: 10.1016/j.egypro.2016.06.103
    [4] SHUI L, CHEN F Y, GARG A, et al. Design optimization of battery pack enclosure for electric vehicle[J]. Structural and Multidisciplinary Optimization, 2018, 58(1): 331-347. doi: 10.1007/s00158-018-1901-y
    [5] RUHATIYA C, GIA BAO P N, QUAN T L, et al. A hybrid multi-output-predictive modelling based NSGA Ⅱ approach for dimensions design optimization of battery pack module for electric vehicles[J]. Energy Storage, 2020, 2(3): e130. doi: 10.1002/est2.130
    [6] CUI X J, PANDA B, CHIN C M M, et al. An application of evolutionary computation algorithm in multidisciplinary design optimization of battery packs for electric vehicle[J]. Energy Storage, 2020, 2(3): e158. doi: 10.1002/est2.158
    [7] 欧阳威, 王丽娟, 陈宗渝, 等. 基于响应面法的动力电池包箱体轻量化优化设计[J]. 机械设计与制造, 2021(2): 246-251. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ202102058.htm

    OUYANG W, WANG L J, CHEN Z Y, et al. Lightweight optimization design of power battery case based on response surface method[J]. Machinery Design & Manufacture, 2021(2): 246-251. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ202102058.htm
    [8] ZHANG Y H, CHEN S Q, SHAHIN M E, et al. Multi-objective optimization of lithium-ion battery pack casing for electric vehicles: key role of materials design and their influence[J]. International Journal of Energy Research, 2020, 44(12): 9414-9437. doi: 10.1002/er.4965
    [9] 李明秋. 电池包箱体的有限元分析和结构优化设计[D]. 长春: 吉林大学, 2017.

    LI M Q. Finite element analysis and structural optimization design of battery pack enclosure[D]. Changchun: Jilin University, 2017. (in Chinese)
    [10] 谭丽辉, 李春阳. 基于Optistruct的电池包箱体优化设计[J]. 吉林化工学院学报, 2020, 37(9): 34-39. https://www.cnki.com.cn/Article/CJFDTOTAL-JHXY202009008.htm

    TAN L H, LI C Y. Optimization design of battery pack enclosure based on Optistruct[J]. Journal of Jilin Institute of Chemical Technology, 2020, 37(9): 34-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JHXY202009008.htm
    [11] 冷晓伟. 电动汽车动力电池箱有限元分析及结构优化[D]. 青岛: 青岛大学, 2018.

    LENG X W. Finite element analysis and structural optimization of electric vehicle power battery box[D]. Qingdao: Qingdao University, 2018. (in Chinese)
    [12] 谢晖, 楚博, 王杭燕, 等. 基于形貌优化的高耐撞性电动汽车一体式电池箱设计[J]. 塑性工程学报, 2019, 26(4): 142-149. https://www.cnki.com.cn/Article/CJFDTOTAL-SXGC201904022.htm

    XIE H, CHU B, WANG H Y, et al. Design of integrated electric vehicle battery case with higher level of crashworthiness based on topography optimization[J]. Journal of Plasticity Engineering, 2019, 26(4): 142-149. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SXGC201904022.htm
    [13] 兰凤崇, 陈元, 周云郊, 等. 轻质多材料动力电池包箱体选材与优化[J]. 吉林大学学报(工学版), 2020, 50(4): 1227-1234. doi: 10.13229/j.cnki.jdxbgxb20190280

    LAN F C, CHEN Y, ZHOU Y J, et al. Multi-material selection and optimization of lightweight battery pack enclosure[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(4): 1227-1234. (in Chinese) doi: 10.13229/j.cnki.jdxbgxb20190280
    [14] 冯富春, 杨重科, 李彦良, 等. 某电动汽车电池包挤压仿真分析[J]. 电源世界, 2017(4): 33-36. https://www.cnki.com.cn/Article/CJFDTOTAL-JXKF202306029.htm

    FENG F C, YANG Z K, LI Y L, et al. Squeezing simulation analysis of electric vehicle battery box[J]. The World of Power Supply, 2017(4): 33-36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXKF202306029.htm
    [15] 李志杰, 陈吉清, 兰凤崇, 等. 机械外力下动力电池包的系统安全性分析与评价[J]. 机械工程学报, 2019, 55(12): 137-148. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201912016.htm

    LI Z J, CHEN J Q, LAN F C, et al. Analysis and evaluation on system safety of power battery pack under mechanical loading[J]. Journal of Mechanical Engineering, 2019, 55(12): 137-148. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201912016.htm
    [16] 李垚坤, 余万铨, 贺东方, 等. 纯电动汽车电池箱体结构分析与轻量化设计[J]. 塑料工业, 2020, 48(8): 91-95. https://www.cnki.com.cn/Article/CJFDTOTAL-SLGY202008027.htm

    LI Y K, YU W Q, HE D F, et al. Structural analysis and lightweight design of battery box for pure electric vehicles[J]. China Plastics Industry, 2020, 48(8): 91-95. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLGY202008027.htm
    [17] 岑波, 周攀峰, 胡为松, 等. 基于有限元仿真的动力电池包机械性能分析[J]. 电源技术, 2020, 44(8): 1173-1176. https://www.cnki.com.cn/Article/CJFDTOTAL-DYJS202008025.htm

    CEN B, ZHOU P F, HU W S, et al. Mechanical performance analysis of power battery pack based on finite element simulation[J]. Chinese Journal of Power Sources, 2020, 44(8): 1173-1176. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DYJS202008025.htm
    [18] 匡松松, 熊飞, 刘静, 等. 动力蓄电池包挤压失效仿真与实验[J]. 中国机械工程, 2020, 31(4): 498-503. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX202004020.htm

    KUANG S S, XIONG F, LIU J, et al. Squeezing simulation and experiment of electric vehicle battery packs[J]. China Mechanical Engineering, 2020, 31(4): 498-503. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX202004020.htm
    [19] NAM W, KIM J Y, OH K Y. The characterization of dynamic behavior of Li-ion battery packs for enhanced design and states identification[J]. Energy Conversion and Management, 2018, 162: 264-275.
    [20] 林莉, 支旭东, 范锋, 等. Q235B钢Johnson-Cook模型参数的确定[J]. 振动与冲击, 2014, 33(9): 153-158. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201409030.htm

    LIN L, ZHI X D, FAN F, et al. Determination of parameters of Johnson-Cook models of Q235B steel[J]. Journal of Vibration and Shock, 2014, 33(9): 153-158. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201409030.htm
    [21] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 31467.3-2015电动汽车用锂离子动力蓄电池包和系统第3部分: 安全性要求与测试方法[S]. 北京: 中国标准出版社, 2015.

    Inspection and Quarantine of the People's Republic of China, Standardization Administration. GB/T 31467.3-2015 Lithium-ion traction battery pack and system for electric vehicles-part 3: safety requirements and test methods[S]. Beijing: Standards Press of China, 2015. (in Chinese)
    [22] 梁龙. 产品包装件跌落过程分析与仿真[D]. 广州: 暨南大学, 2009.

    LIANG L. Dropping analysis and simulation of product package[D]. Guangzhou: Jinan University, 2009. (in Chinese)
    [23] CHEN M, GUO L X. The parameters sensitivity analysis of battery electric vehicle dynamic performance[J]. Applied Mechanics and Materials, 2011, 80-81: 837-840.
    [24] 唐崛, 姬国勋, 孙新利, 等. 手机屏幕跌落安全性研究[J]. 包装工程, 2018, 39(11): 115-120. https://www.cnki.com.cn/Article/CJFDTOTAL-BZGC201811022.htm

    TANG J, JI G X, SUN X L, et al. Security of mobile phone screen under dropping loadings[J]. Packaging Engineering, 2018, 39(11): 115-120. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BZGC201811022.htm
    [25] TEMPELMAN E, DWAIKAT M M S, SPITÁS C. Experimental and analytical study of free-fall drop impact testing of portable products[J]. Experimental Mechanics, 2012, 52(9): 1385-1395.
    [26] 田崔钧, 田君, 陈芬, 等. 锂离子电池安全性测试分析[J]. 重庆理工大学学报(自然科学), 2018, 32(10): 34-39. https://www.cnki.com.cn/Article/CJFDTOTAL-CGGL201810004.htm

    TIAN C J, TIAN J, CHEN F, et al. Analysis of the lithium-ion battery safety test[J]. Journal of Chongqing University of Technology (Natural Science), 2018, 32(10): 34-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CGGL201810004.htm
    [27] 兰凤崇, 刘金, 陈吉清, 等. 电动汽车电池包箱体及内部结构碰撞变形与响应分析[J]. 华南理工大学学报(自然科学版), 2017, 45(2): 1-8.

    LAN F C, LIU J, CHEN J Q, et al. Deformation and response analysis of pack and internal structure of electrical vehicle battery in collision[J]. Journal of South China University of Technology (Natural Science Edition), 2017, 45(2): 1-8. (in Chinese)
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  144
  • HTML全文浏览量:  114
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-21
  • 刊出日期:  2023-10-25

目录

    /

    返回文章
    返回