留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锯齿形切屑形成过程根切试验研究

王风奇 李嫚 赵敏

王风奇,李嫚,赵敏. 锯齿形切屑形成过程根切试验研究[J]. 机械科学与技术,2023,42(11):1872-1879 doi: 10.13433/j.cnki.1003-8728.20220140
引用本文: 王风奇,李嫚,赵敏. 锯齿形切屑形成过程根切试验研究[J]. 机械科学与技术,2023,42(11):1872-1879 doi: 10.13433/j.cnki.1003-8728.20220140
WANG Fengqi, LI Man, ZHAO Min. Experimental Study on Formation Process of Saw-toothChip in Root Cutting[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(11): 1872-1879. doi: 10.13433/j.cnki.1003-8728.20220140
Citation: WANG Fengqi, LI Man, ZHAO Min. Experimental Study on Formation Process of Saw-toothChip in Root Cutting[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(11): 1872-1879. doi: 10.13433/j.cnki.1003-8728.20220140

锯齿形切屑形成过程根切试验研究

doi: 10.13433/j.cnki.1003-8728.20220140
详细信息
    作者简介:

    王风奇(1996−),硕士研究生,研究方向为超硬刀具及先进材料切削加工,wangfengqi1996@163.com

    通讯作者:

    李嫚,副教授,硕士生导师,硕士,liman@dlut.edu.cn

  • 中图分类号: TG514

Experimental Study on Formation Process of Saw-toothChip in Root Cutting

  • 摘要: 通过根切试验获得了大量锯齿形切屑根部样本,对样本进行金相处理之后得到了清晰的锯齿形切屑根部组织图片,基于切屑根部组织的变形特征,分析了锯齿形切屑的形成过程及机理,并建立了锯齿形切屑形成过程模型。研究结果表明:锯齿形切屑形成过程可分为第1变形区内剪切挤压变形积累和初步剪切面的形成阶段、切屑自由表面与切削层自由表面分离即剪切面的形成阶段、第1和第2变形区内锯齿单元发生整体集中剪切滑移阶段;锯齿形切屑的形成是由于第1变形区内靠近刀尖处材料发生热塑性失稳导致;绝热剪切带内部和切削层表面处有裂纹产生,裂纹产生于锯齿单元整体剪切滑移阶段,并且靠近切削层表面处更容易产生裂纹。
  • 图  1  弹簧式快速落刀装置

    Figure  1.  Spring-loaded quick-drop device

    图  2  装置受力简图

    Figure  2.  Force of the device

    图  3  刀具示意图

    Figure  3.  Cutting tool diagram

    图  4  工件切槽处理

    Figure  4.  Workpiece grooving

    图  5  切屑根部样本

    Figure  5.  Chip root sample

    图  6  金相试样制备

    Figure  6.  Metallographic specimen preparation

    图  7  金相处理结果

    Figure  7.  Metallurgical processing results

    图  8  基体金相组织图

    Figure  8.  Metallographic organisation of the basis material

    图  9  锯齿单元形成第1阶段根部组织图

    Figure  9.  Organisation of the roots in the first stage of serratedunit formation

    图  10  锯齿单元形成第2阶段根部组织图

    Figure  10.  Organisation of the roots in the second stage ofserrated unit formation

    图  11  锯齿单元形成第3阶段根部组织图

    Figure  11.  Organisation of the roots in the third stage ofserrated unit formation

    图  12  裂纹现象

    Figure  12.  Crack phenomenon

    图  13  锯齿形切屑形成过程3阶段模型

    Figure  13.  Model of the three-stages of sawtooth chip formation process

    表  1  Ti6Al4V的力学性能

    Table  1.   Mechanical properties of Ti6Al4V

    屈服强度/
    MPa
    拉伸强度/
    MPa
    弹性模量/
    GPa
    延长率/% 硬度/
    HB
    89698511810313
    下载: 导出CSV
  • [1] 李嫚, 王帅康, 程职玲, 等. 基于ABAQUS的镍基高温合金锯齿形切屑演变过程及机理研究[J]. 工具技术, 2019, 53(1): 36-42. doi: 10.16567/j.cnki.1000-7008.20190114.004

    LI M, WANG S K, CHENG Z L, et al. Study on mechanism and evolution of serrated-chip of Ni-base superalloy based on ABAQUS[J]. Tool Engineering, 2019, 53(1): 36-42. (in Chinese) doi: 10.16567/j.cnki.1000-7008.20190114.004
    [2] 何振中. 基于ABAQUS的锯齿形切屑形成机理分析与实验研究[J]. 机床与液压, 2020, 48(18): 70-74. doi: 10.3969/j.issn.1001-3881.2020.18.010

    HE Z Z. Mechanism analysis and experimental study of serrated chip formation based on ABAQUS[J]. Machine Tool & Hydraulics, 2020, 48(18): 70-74. (in Chinese) doi: 10.3969/j.issn.1001-3881.2020.18.010
    [3] 刘东. TC4钛合金切削中切屑塑性变形分析[J]. 宇航材料工艺, 2017, 47(4): 71-74. doi: 10.12044/j.issn.1007-2330.2017.04.016

    LIU D. Analysis of chip plastic deformation during machining of titanium alloy TC4[J]. Aerospace Materials & Technology, 2017, 47(4): 71-74. (in Chinese) doi: 10.12044/j.issn.1007-2330.2017.04.016
    [4] 何光春, 庄凯. 高速切削淬硬AISIH13锯齿形切屑形成机理研究[J]. 模具工业, 2020, 46(2): 66-71. doi: 10.16787/j.cnki.1001-2168.dmi.2020.02.016

    HE G C, ZHUANG K. Research on formation mechanism of saw-tooth chip in high-speed cutting hardening AISIH13[J]. Die & Mould Industry, 2020, 46(2): 66-71. (in Chinese) doi: 10.16787/j.cnki.1001-2168.dmi.2020.02.016
    [5] 赖曲芳, 付鹏, 胡淑芬. Ti6A14V高效切削加工中绝热剪切带内微观组织演变及其形成机制[J]. 科学技术与工程, 2019, 19(5): 88-93. doi: 10.3969/j.issn.1671-1815.2019.05.013

    LAI Q F, FU P, HU S F. Microstructure evolution and formation mechanism of adiabatic shear band in Ti6A14V high efficiency cutting process[J]. Science Technology and Engineering, 2019, 19(5): 88-93. (in Chinese) doi: 10.3969/j.issn.1671-1815.2019.05.013
    [6] 庆振华, 左敦稳, 杨海东, 等. 弹簧式快速落刀研究硬态42CrMo锯齿形切屑[J]. 中国机械工程, 2016, 27(3): 308-314. doi: 10.3969/j.issn.1004-132X.2016.03.005

    QING Z H, ZUO D W, YANG H D, et al. Research on hardened 42CrMo saw-tooth chip by trial with spring type quick-stop device[J]. China Mechanical Engineering, 2016, 27(3): 308-314. (in Chinese) doi: 10.3969/j.issn.1004-132X.2016.03.005
    [7] 殷继花, 林有希, 孟鑫鑫, 等. 航空铝合金7075-T651高速铣削锯齿形切屑的形成机理研究[J]. 表面技术, 2019, 48(5): 275-285. doi: 10.16490/j.cnki.issn.1001-3660.2019.05.039

    YIN J H, LIN Y X, MENG X X, et al. Formation mechanism of sawtooth chip in high speed milling of aeronautical aluminum alloy 7075-T651[J]. Surface Technology, 2019, 48(5): 275-285. (in Chinese) doi: 10.16490/j.cnki.issn.1001-3660.2019.05.039
    [8] MENG X X, LIN Y X. Chip morphology and cutting temperature of ADC12 aluminum alloy during high-speed milling[J]. Rare Metals, 2021, 40(7): 1915-1923. doi: 10.1007/s12598-020-01486-2
    [9] TURLEY D M, DOYLE E D, RAMALINGAM S. Calculation of shear strains in chip formation in titanium[J]. Materials Science and Engineering, 1982, 55(1): 45-48. doi: 10.1016/0025-5416(82)90082-9
    [10] LI J Q, XU B C. Study on adiabatic shearing sensitivity of titanium alloy in the process of different cutting speeds[J]. The International Journal of Advanced Manufacturing Technology, 2017, 93(5): 1859-1865.
    [11] HOU Z B, KOMANDURI R. On a thermomechanical model of shear instability in machining[J]. CIRP Annals, 1995, 44(1): 69-73. doi: 10.1016/S0007-8506(07)62277-X
    [12] 苏国胜. 高速切削锯齿形切屑形成过程与形成机理研究[D]. 济南: 山东大学, 2011.

    SU G S. Evolution and mechanisms of saw-tooth chip formation in high-speed machining[D]. Ji'nan: Shandong University, 2011. (in Chinese)
    [13] 段春争. 正交切削高强度钢绝热剪切行为的微观机理研究[D]. 大连: 大连理工大学, 2005.

    DUAN C Z. Study on microcosmic mechanism of adiabatic shear behavior in orthogonal cutting of high strength steel[D]. Dalian: Dalian University of Technology, 2005. (in Chinese)
    [14] 王雨溥, 李嫚, 裴江涛. 钛合金切削性能及绝热剪切带微观形态研究[J]. 工具技术, 2017, 51(11): 25-29. doi: 10.3969/j.issn.1000-7008.2017.11.006

    WANG Y P, LI M, PEI J T. Reseach on cutting performance and micro-morphology of adiabatic shear band in cuting titanium alloy[J]. Tool Engineering, 2017, 51(11): 25-29. (in Chinese) doi: 10.3969/j.issn.1000-7008.2017.11.006
    [15] 程职玲, 李嫚, 周锡宝, 等. 基于ABAQUS镍基高温合金锯齿形切屑形成过程的有限元模拟[J]. 现代制造工程, 2016(6): 99-103. doi: 10.16731/j.cnki.1671-3133.2016.06.020

    CHENG Z L, LI M, ZHOU X B, et al. Finite element simulation about the serrated-chip formation process of Ni-base superalloy based on ABAQUS[J]. Modern Manufacturing Engineering, 2016(6): 99-103. (in Chinese) doi: 10.16731/j.cnki.1671-3133.2016.06.020
    [16] WANG S T, ZHANG Y C, GOU W D, et al. Research on improvement of merchant shear angle model[J]. Advanced Materials Research, 2014, 894: 192-200. doi: 10.4028/www.scientific.net/AMR.894.192
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  98
  • HTML全文浏览量:  47
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-23
  • 刊出日期:  2023-11-30

目录

    /

    返回文章
    返回