留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

连续型机器人运动学的平面圆弧法建模与实验研究

高源 臧红彬 袁卫锋 周军 尹强 李成佳 蔡勇 刘樾

高源,臧红彬,袁卫锋, 等. 连续型机器人运动学的平面圆弧法建模与实验研究[J]. 机械科学与技术,2023,42(11):1811-1820 doi: 10.13433/j.cnki.1003-8728.20220138
引用本文: 高源,臧红彬,袁卫锋, 等. 连续型机器人运动学的平面圆弧法建模与实验研究[J]. 机械科学与技术,2023,42(11):1811-1820 doi: 10.13433/j.cnki.1003-8728.20220138
GAO Yuan, ZANG Hongbin, YUAN Weifeng, ZHOU Jun, YIN Qiang, LI Chengjia, CAI Yong, LIU Yue. Modeling of Kinematics of Continuous Robot via Plane Circular Method and Experimental Study[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(11): 1811-1820. doi: 10.13433/j.cnki.1003-8728.20220138
Citation: GAO Yuan, ZANG Hongbin, YUAN Weifeng, ZHOU Jun, YIN Qiang, LI Chengjia, CAI Yong, LIU Yue. Modeling of Kinematics of Continuous Robot via Plane Circular Method and Experimental Study[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(11): 1811-1820. doi: 10.13433/j.cnki.1003-8728.20220138

连续型机器人运动学的平面圆弧法建模与实验研究

doi: 10.13433/j.cnki.1003-8728.20220138
基金项目: 企业联合开发项目(20zh004002)
详细信息
    作者简介:

    高源(1995−),硕士研究生,研究方向为连续型机器人运动控制,529139857@qq.com

    通讯作者:

    臧红彬,教授,博士生导师,博士,zanghongb@163.com

  • 中图分类号: TP242

Modeling of Kinematics of Continuous Robot via Plane Circular Method and Experimental Study

  • 摘要: 针对当前连续型机器人的运动学逆解求解复杂、低效这一问题,提出了一种基于平面圆弧法的运动学建模方法,其具有运动学逆解求解简单、高效的特点。利用该方法在平面内拟合连续型机器人的弯曲运动形状,建立其运动学模型,分析其驱动空间、关节空间和操作空间的映射关系,并描述其工作空间。分析连续型机器人在平面内弯曲形状的几何约束,建立关节空间变量之间的数学关系,降低求解复杂逆运动学问题的难度。对机器人末端执行器的位置和驱动线长度变化曲线进行仿真分析,求解逆运动学的有效解,并研制原理样机进行样机实验,实验表明该运动学模型的正确性以及逆运动学求解方法的有效性。
  • 图  1  连续型机器人系统

    Figure  1.  Continuous robot system

    图  2  柔性臂三维空间弯曲运动模型

    Figure  2.  Three-dimensional bending motion model of a flexible arm

    图  3  柔性臂单圆弧弯曲运动几何模型

    Figure  3.  Geometric model of single circular arc bendingmotion of a flexible arm

    图  4  单圆弧弯曲驱动线示意图

    Figure  4.  Schematic diagram of single arc bending driving lines

    图  5  柔性臂驱动线几何关系图

    Figure  5.  Geometric relationship of flexiblearm driving lines

    图  6  柔性臂双圆弧弯曲运动几何模型

    Figure  6.  Geometric model of double circular arc bendingmotion of a flexible arm

    图  7  双圆弧曲线几何关系示意图

    Figure  7.  Schematic diagram of geometric relationship of double arc curves

    图  8  双圆弧曲线形状下末端执行器几何模型

    Figure  8.  Geometric model of an end effector in double arccurve shape

    图  9  柔性臂工作空间示意图

    Figure  9.  Diagram of flexible arm workspace

    图  10  单圆弧曲线柔性臂末端执行器位置变化曲线

    Figure  10.  Position change curve of end effector of a flexible arm with single circular arc curve

    图  11  柔性臂第一段关节组驱动线长度变化曲线

    Figure  11.  Length variation curve of driving line of the first joint group of a flexible arm

    图  12  柔性臂第二段关节组驱动线长度变化曲线

    Figure  12.  Length variation curve of driving line of the second joint group of a flexible arm

    图  13  双圆弧曲线柔性臂末端执行器位置变化曲线

    Figure  13.  Position change curve of end effector of doublecircular arc flexible arm

    图  14  双圆弧弯曲第二段关节组驱动线长度变化曲线

    Figure  14.  Length change curve of driving line of the second joint group of double arc bending

    图  15  连续型柔性臂平面内弯曲运动试验

    Figure  15.  In plane bending motion test of continuous flexible arm

    图  16  随机取得16个目标点的直线距离误差曲线

    Figure  16.  Straight line distance error curve of 16 target points at random

    图  17  平面y = 345内目标点直线距离误差曲线

    Figure  17.  Straight line distance error curve of target points in plane y = 345

    表  1  4种工况下的绳长变化量

    Table  1.   Rope length variation under four working conditions mm

    参数工况1工况2工况3工况4
    $\Delta {l_{11}}$2.07714.616−12.98.01
    $\Delta {l_{12}}$2.077−14.616−0.92.70
    $\Delta {l_{13}}$−2.077−14.61612.9−8.01
    $\Delta {l_{14}}$−2.07714.6160.9−2.70
    $\Delta {l_{21}}$20.9825.69825.16−30.98
    $\Delta {l_{22}}$20.98−25.6981.75−10.32
    $\Delta {l_{23}}$−20.98−25.698−25.1630.98
    $\Delta {l_{24}}$−20.9825.698−1.7510.32
    $\Delta {l_{31}}$30.97930.40146.77−52.73
    $\Delta {l_{32}}$30.979−30.4013.26−17.57
    $\Delta {l_{33}}$−30.979−30.401−46.7752.73
    $\Delta {l_{34}}$−30.97930.401−3.2617.57
    下载: 导出CSV

    表  2  4种工况下仿真值与实际值

    Table  2.   Simulation values and actual values underfour working conditions mm

    工况参数值xyz
    1仿真值402.3398.60
    实际值403.0394.0−4.0
    误差0.74.64.0
    2仿真值345.30501.3
    实际值354.0−8.5503.0
    误差9.38.51.7
    3仿真值400.0230.0200.0
    实际值407.5240.0201.0
    误差7.510.01.0
    4仿真值300.0−300.0−150.0
    实际值310.0−299.0−148.0
    误差10.01.02.0
    下载: 导出CSV
  • [1] 孙立宁, 胡海燕, 李满天. 连续型机器人研究综述[J]. 机器人, 2010, 32(5): 688-694.

    SUN L N, HU H Y, LI M T. A review on continuum robot[J]. Robot, 2010, 32(5): 688-694. (in Chinese)
    [2] 韦贵炜, 徐振邦, 赵智远, 等. 线驱动连续型机械臂设计与运动学仿真[J]. 机械传动, 2019, 43(11): 32-38.

    WEI G W, XU Z B, ZHAO Z Y, et al. Design and kinematics simulation of a wire-driven multi-section continuous manipulator[J]. Journal of Mechanical Transmission, 2019, 43(11): 32-38. (in Chinese)
    [3] 王田苗, 郝雨飞, 杨兴帮, 等. 软体机器人: 结构、驱动、传感与控制[J]. 机械工程学报, 2017, 53(13): 1-13. doi: 10.3901/JME.2017.13.001

    WANG T M, HAO Y F, YANG X B, et al. Soft robotics: structure, actuation, sensing and control[J]. Journal of Mechanical Engineering, 2017, 53(13): 1-13. (in Chinese) doi: 10.3901/JME.2017.13.001
    [4] 林阳, 赵欢, 丁汉. 基于多种群遗传算法的一般机器人逆运动学求解[J]. 机械工程学报, 2017, 53(3): 1-8. doi: 10.3901/JME.2017.03.001

    LIN Y, ZHAO H, DING H. Solution of inverse kinematics for general robot manipulators based on multiple population genetic algorithm[J]. Journal of Mechanical Engineering, 2017, 53(3): 1-8. (in Chinese) doi: 10.3901/JME.2017.03.001
    [5] 陈鹏, 刘璐, 余飞, 等. 一种仿人机械臂的运动学逆解的几何求解方法[J]. 机器人, 2012, 34(2): 211-216. doi: 10.3724/SP.J.1218.2012.00211

    CHEN P, LIU L, YU F, et al. A geometrical method for inverse kinematics of a kind of humanoid manipulator[J]. Robot, 2012, 34(2): 211-216. (in Chinese) doi: 10.3724/SP.J.1218.2012.00211
    [6] 胡海燕, 王鹏飞, 孙立宁, 等. 线驱动连续型机器人的运动学分析与仿真[J]. 机械工程学报, 2010, 46(19): 1-8. doi: 10.3901/JME.2010.19.001

    HU H Y, WANG P F, SUN L N, et al. Kinematic analysis and simulation for cable-driven continuum robot[J]. Journal of Mechanical Engineering, 2010, 46(19): 1-8. (in Chinese) doi: 10.3901/JME.2010.19.001
    [7] DONG X, RAFFLES M, GUZMAN S C, et al. Design and analysis of a family of snake arm robots connected by compliant joints[J]. Mechanism and Machine Theory, 2014, 77: 73-91. doi: 10.1016/j.mechmachtheory.2014.01.017
    [8] DONG X, RAFFLES M, COBOS-GUZMAN S, et al. A novel continuum robot using twin-pivot compliant joints: design, modeling, and validation[J]. Journal of Mechanisms and Robotics, 2016, 8(2): 021010. doi: 10.1115/1.4031340
    [9] DONG X, AXINTE D, PALMER D, et al. Development of a slender continuum robotic system for on-wing inspection/repair of gas turbine engines[J]. Robotics and Computer -Integrated Manufacturing, 2017, 44: 218-229. doi: 10.1016/j.rcim.2016.09.004
    [10] 高庆吉, 王维娟, 牛国臣, 等. 飞机油箱检查机器人的仿生结构及运动学研究[J]. 航空学报, 2013, 34(7): 1748-1756.

    GAO Q J, WANG W J, NIU G C, et al. Study of bionic structure and kinematics of robot for aircraft fuel tank inspection[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(7): 1748-1756. (in Chinese)
    [11] 牛国臣, 张云霄. 连续型机器人运动学仿真和操控系统设计[J]. 智能系统学报, 2020, 15(6): 1058-1067.

    NIU G C, ZHANG Y X. Kinematics simulation and control system design of continuous robot[J]. CAAI Transactions on Intelligent Systems, 2020, 15(6): 1058-1067. (in Chinese)
    [12] QIN G D, JI A H, CHENG Y, et al. A snake-inspired layer-driven continuum robot[J]. Soft Robotics, 2022, 9(4): 788-797. doi: 10.1089/soro.2020.0165
    [13] GODAGE I S, WALKER I D. Dual quaternion based modal kinematics for multisection continuum arms[C]//Proceedings of 2015 IEEE International Conference on Robotics and Automation. Seattle: IEEE, 2015: 1416-1422.
    [14] GODAGE I S, MEDRANO-CERDA G A, BRANSON D T, et al. Modal kinematics for multisection continuum arms[J]. Bioinspiration & Biomimetics, 2015, 10(3): 035002.
    [15] 李旻翰, 康荣杰. 仿章鱼连续型机构运动学建模与控制仿真[J]. 中国科技论文, 2016, 11(10): 1085-1088.

    LI M H, KANG R J. Kinematic modeling and control simulation for an octopus-like continuum mechanism[J]. China Sciencepaper, 2016, 11(10): 1085-1088. (in Chinese)
    [16] 方跃法, 林华杰. 连续体并联抓取机器人的结构设计及运动学分析[J]. 北京交通大学学报, 2019, 43(4): 80-87.

    FANG Y F, LIN H J. Structural design and kinematics analysis of the continuum parallel grasping manipulator[J]. Journal of Beijing Jiaotong University, 2019, 43(4): 80-87. (in Chinese)
    [17] 赵志刚, 陈志刚. 柔性气动连续体机器人关节结构设计与运动学分析[J]. 机械科学与技术, 2015, 34(2): 184-187.

    ZHAO Z G, CHEN Z G. Mechanism design and kinematics analysis of pneumatic soft continuum robot joint[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(2): 184-187. (in Chinese)
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  139
  • HTML全文浏览量:  130
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-01
  • 刊出日期:  2023-11-30

目录

    /

    返回文章
    返回