留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结合SOM和LSTM的道岔转辙设备健康状态评估及预测

武晓春 温昕

武晓春,温昕. 结合SOM和LSTM的道岔转辙设备健康状态评估及预测[J]. 机械科学与技术,2023,42(11):1794-1800 doi: 10.13433/j.cnki.1003-8728.20220137
引用本文: 武晓春,温昕. 结合SOM和LSTM的道岔转辙设备健康状态评估及预测[J]. 机械科学与技术,2023,42(11):1794-1800 doi: 10.13433/j.cnki.1003-8728.20220137
WU Xiaochun, WEN Xin. Health State Evaluation and Prediction of Switch Equipment Using SOM and LSTM[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(11): 1794-1800. doi: 10.13433/j.cnki.1003-8728.20220137
Citation: WU Xiaochun, WEN Xin. Health State Evaluation and Prediction of Switch Equipment Using SOM and LSTM[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(11): 1794-1800. doi: 10.13433/j.cnki.1003-8728.20220137

结合SOM和LSTM的道岔转辙设备健康状态评估及预测

doi: 10.13433/j.cnki.1003-8728.20220137
基金项目: 国家自然科学基金地区项目(61661027)
详细信息
    作者简介:

    武晓春(1973−),教授,研究方向为交通信息工程及控制,369038806@qq.com

  • 中图分类号: U284

Health State Evaluation and Prediction of Switch Equipment Using SOM and LSTM

  • 摘要: 针对道岔转辙设备故障频发,且工作人员无法准确评估及预测其健康状态的问题,进行结合SOM-LSTM混合神经网络的道岔转辙设备健康状态评估及预测方法研究。首先,依据道岔动作功率曲线特点分三段提取其时域特征参数,利用自组织映射神经网络(Self organizing map,SOM)中最小量化误差求解道岔转辙设备健康因子(Health index,HI);其次,运用长短时记忆神经网络(Long short term memory,LSTM)算法预测道岔转辙设备后续健康因子曲线;最后,利用现场采集数据,对算法的有效性进行验证。实验结果表明:SOM方法可有效追踪道岔转辙设备健康状态变化规律,实现对健康因子的快速准确计算;相较于误差反向传播神经网络(Back propagation,BP神经网络)和循环神经网络(Recurrent neural network,RNN神经网络),LSTM算法预测效果较好,准确度提升,对道岔转辙设备的健康管理具有一定的指导意义。
  • 图  1  结合SOM-LSTM混合神经网络道岔健康状态评估与预测流程

    Figure  1.  Assessment and prediction of switch equipment health status combined withSOM-LSTM hybrid neural network algorithm

    图  2  道岔转辙设备功率曲线图

    Figure  2.  Power curve of switch equipment

    图  3  LSTM原理框图

    Figure  3.  Block diagram for LSTM principles

    图  4  SOM神经网络6*6拓扑结构

    Figure  4.  SOM neural network's 6 * 6 topological structure

    图  5  邻近神经元之间的距离分布

    Figure  5.  Distance distribution between adjacent neurons

    图  6  道岔转辙设备HI曲线图

    Figure  6.  HI curve of switch equipment

    图  7  道岔转辙设备功率图

    Figure  7.  Diagram of switch equipment's power

    图  8  LSTM、BP、RNN预测设备HI结果

    Figure  8.  LSTM, BP, RNN prediction equipment's HI results

    表  1  8种时域特征计算公式表

    Table  1.   Calculation formulas for 8 types of domain features

    项目公式
    标准差(STD) $\sqrt{\dfrac{1}{C}{\displaystyle {\sum }_{c=1}^{C}{\left(F(c)-\frac{1}{C}{\displaystyle {\sum }_{c=1}^{C}F(c)}\right)^2}} }$
    峰度(KT) $\dfrac{ {\dfrac{1}{C}\displaystyle\sum\nolimits_{i = 1}^C {F{ {(i)}^4} } } }{ { {\sigma ^4} } }$
    峰峰值(P2P) $\max (F) - {\text{min} }(F)$
    偏斜度(SK) $\dfrac{ {\dfrac{1}{C}\displaystyle\sum\nolimits_{i = 1}^C {F{ {(i)}^2} } } }{ { {\sigma ^2} } }$
    均方根(RMS) $\sqrt {\dfrac{1}{C}\displaystyle\sum\nolimits_{c = 1}^C {F(c)} {}^2}$
    波峰因子(CF) $\dfrac{ {{\rm{MAX}}(F)} }{ {{\rm{RMS}}} }$
    均值(Mean) $\dfrac{1}{C}\displaystyle\sum\nolimits_{c = 1}^C {F(c)}$
    方差(Var) $\dfrac{1}{C}\displaystyle\sum\nolimits_{c = 1}^C { { {\left(F(c) - \frac{1}{C}\displaystyle\sum\nolimits_{c = 1}^C {F(c)} \right)}^2} }$
    下载: 导出CSV

    表  2  不同预测算法实验结果对比

    Table  2.   Comparison of experimental results of differentprediction algorithms


    算法
    平均相对误差
    MRE/%
    均方根误差
    RMSE/%
    决定系数R2
    LSTM 0.473 5.048 0.703
    BP 1.071 5.822 0.614
    RNN 0.583 5.631 0.587
    下载: 导出CSV
  • [1] 钟志旺, 陈建译, 唐涛, 等. 基于SVDD的道岔故障检测和健康评估方法[J]. 西南交通大学学报, 2018, 53(4): 842-849. doi: 10.3969/j.issn.0258-2724.2018.04.024

    ZHONG Z W, CHEN J Y, TANG T, et al. SVDD-Based research on railway-turnout fault detection and health assessment[J]. Journal of Southwest Jiaotong University, 2018, 53(4): 842-849. (in Chinese) doi: 10.3969/j.issn.0258-2724.2018.04.024
    [2] 黄世泽, 陈威, 张帆, 等. 基于弗雷歇距离的道岔故障诊断方法[J]. 同济大学学报(自然科学版), 2018, 46(12): 1690-1695. doi: 10.11908/j.issn.0253-374x.2018.12.011

    HUANG S Z, CHEN W, ZHANG F, et al. Method of turnout fault diagnosis based on fréchet distance[J]. Journal of Tongji University (Natural Science), 2018, 46(12): 1690-1695. (in Chinese) doi: 10.11908/j.issn.0253-374x.2018.12.011
    [3] 钟志旺. 铁路道岔健康状态评估与预测方法研究[D]. 北京: 北京交通大学, 2019.

    ZHONG Z W. Research on methods of health condition assessment and prediction of railway turnout[D]. Beijing: Beijing Jiaotong University, 2019. (in Chinese)
    [4] 杨菊花, 于苡健, 陈光武, 等. 基于CNN-GRU模型的道岔故障诊断算法研究[J]. 铁道学报, 2020, 42(7): 102-109.

    YANG J H, YU Y J, CHEN G W, et al. Research on turnout fault diagnosis algorithms based on CNN-GRU model[J]. Journal of the China Railway Society, 2020, 42(7): 102-109. (in Chinese)
    [5] 魏文军, 刘新发. 基于EEMD多尺度样本熵的S700K转辙机故障诊断[J]. 中南大学学报(自然科学版), 2019, 50(11): 2763-2772.

    WEI W J, LIU X F. Fault diagnosis of S700K switch machine based on EEMD multiscale sample entropy[J]. Journal of Central South University (Science and Technology), 2019, 50(11): 2763-2772. (in Chinese)
    [6] 高利民, 许庆阳, 李锋, 等. 基于SOM-BP混合神经网络的道岔设备退化状态研究[J]. 中国铁道科学, 2020, 41(3): 50-58. doi: 10.3969/j.issn.1001-4632.2020.03.06

    GAO L M, XU Q Y, LI F, et al. Research on degradation state of turnout equipment based on SOM-BP hybrid neural network[J]. China Railway Science, 2020, 41(3): 50-58. (in Chinese) doi: 10.3969/j.issn.1001-4632.2020.03.06
    [7] YILBOGA H, EKER Ö F, GÜÇLÜ A, et al. Failure prediction on railway turnouts using time delay neural networks[C]//Proceedings of 2010 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications. Taranto: IEEE, 2010: 134-137.
    [8] YANG J H, LI X T, XING D F, et al. Turnout fault diagnosis based on DBSCAN/PSO-SOM[J]. Journal of Measurement Science and Instrumentation, 2022, 13(3): 371-378.
    [9] ZHANG K. The railway turnout fault diagnosis algorithm based on BP neural network[C]//Proceedings of 2014 IEEE International Conference on Control Science and Systems Engineering. Yantai: IEEE, 2014: 135-138.
    [10] 李园祥. 基于神经网络的道岔转辙机退化模型的研究[D]. 北京: 北京交通大学, 2020.

    LI Y X. Research on degradation model of turnout switch based on neural network[D]. Beijing: Beijing Jiaotong University, 2020. (in Chinese)
    [11] HE Y M, ZHAO H B, TIAN J, et al. Railway turnout fault diagnosis based on support vector machine[J]. Applied Mechanics and Materials, 2014, 556-562): 2663-2667.
    [12] 钟健康, 陈元华, 张瑞宾. SOM与EWMA在滚动直线导轨故障预测中的应用[J]. 机械科学与技术, 2022, 41(2): 278-287.

    ZHONG J K, CHEN Y H, ZHANG R B. Application of SOM and EWMA in fault prediction of rolling linear guideway[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(2): 278-287. (in Chinese)
    [13] 王建利. 滚动轴承性能退化评价与趋势预测研究[D]. 大连: 大连理工大学, 2013.

    WANG J L. Research on performance degradation assessment and trend prediction of rolling bearing[D]. Dalian: Dalian University of Technology, 2013. (in Chinese)
    [14] 王磊, 刘永强. 基于不平衡样本的CF-SOM-MQE感应电机状态分析[J]. 华南理工大学学报(自然科学版), 2019, 47(3): 30-36.

    WANG L, LIU Y Q. State analysis of induction motor based on CF-SOM-MQE under unbalanced sample condition[J]. Journal of South China University of Technology (Natural Science Edition), 2019, 47(3): 30-36. (in Chinese)
    [15] KODIKARA G R L, MCHENRY L. Self-organizing Maps for identification of zeolitic diagenesis patterns in closed hydrologic systems on the Earth and its implications for Mars[J]. International Journal of Sediment Research, 2021, 36(5): 567-576. doi: 10.1016/j.ijsrc.2021.04.003
    [16] 佘道明, 贾民平, 张菀. 一种新型深度自编码网络的滚动轴承健康评估方法[J]. 东南大学学报(自然科学版), 2018, 48(5): 801-806. doi: 10.3969/j.issn.1001-0505.2018.05.004

    SHE D M, JIA M P, ZHANG W. Deep auto-encoder network method for health assessment of rolling bearings[J]. Journal of Southeast University (Natural Science Edition), 2018, 48(5): 801-806. (in Chinese) doi: 10.3969/j.issn.1001-0505.2018.05.004
    [17] 李婉婉. 基于LSTM的提速道岔故障预测研究[D]. 兰州: 兰州交通大学, 2020.

    LI W W. Study on fault prediction of speed-up switch based on LSTM[D]. Lanzhou: Lanzhou Jiaotong University, 2020. (in Chinese)
    [18] YUAN M, WU Y T, LIN L. Fault diagnosis and remaining useful life estimation of aero engine using LSTM neural network[C]//Proceedings of 2016 IEEE International Conference on Aircraft Utility Systems. Beijing: IEEE, 2016: 135-140.
    [19] 孙洁娣, 毛新茹, 温江涛, 等. 深度卷积长短期记忆网络的轴承故障诊断[J]. 机械科学与技术, 2021, 40(7): 1091-1099. doi: 10.13433/j.cnki.1003-8728.20200170

    SUN J D, MAO X R, WEN J T, et al. Bearing fault diagnosis using deep CNN and LSTM[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(7): 1091-1099. (in Chinese) doi: 10.13433/j.cnki.1003-8728.20200170
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  93
  • HTML全文浏览量:  65
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-28
  • 刊出日期:  2023-11-30

目录

    /

    返回文章
    返回