留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非高斯随机路面下八轮重型车辆悬架的减振控制方法研究

韩祎 董龙雷 唐攀涛

韩祎, 董龙雷, 唐攀涛. 非高斯随机路面下八轮重型车辆悬架的减振控制方法研究[J]. 机械科学与技术, 2023, 42(10): 1575-1582. doi: 10.13433/j.cnki.1003-8728.20220136
引用本文: 韩祎, 董龙雷, 唐攀涛. 非高斯随机路面下八轮重型车辆悬架的减振控制方法研究[J]. 机械科学与技术, 2023, 42(10): 1575-1582. doi: 10.13433/j.cnki.1003-8728.20220136
HAN Yi, DONG Longlei, TANG Pantao. Study on Damping Control Method of Eight-wheel Heavy Vehicle Suspension Under Non-Gaussian Random Road[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(10): 1575-1582. doi: 10.13433/j.cnki.1003-8728.20220136
Citation: HAN Yi, DONG Longlei, TANG Pantao. Study on Damping Control Method of Eight-wheel Heavy Vehicle Suspension Under Non-Gaussian Random Road[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(10): 1575-1582. doi: 10.13433/j.cnki.1003-8728.20220136

非高斯随机路面下八轮重型车辆悬架的减振控制方法研究

doi: 10.13433/j.cnki.1003-8728.20220136
基金项目: 

山东省重大创新工程项目 2019JZZY020215HZ

详细信息
    作者简介:

    韩祎(1991-), 博士研究生, 研究方向为复杂结构建模及减振控制, hanyijy@stu.xjtu.edu.cn

    通讯作者:

    董龙雷, 教授, 博士生导师, dongll@xjtu.edu.cn

  • 中图分类号: TG156

Study on Damping Control Method of Eight-wheel Heavy Vehicle Suspension Under Non-Gaussian Random Road

  • 摘要: 针对非高斯随机路面条件开展了八轮重型装甲车辆悬架的减振控制策略研究。当前随机路面通常采用基于功率谱密度法的高斯信号进行表征, 难以准确描述装甲车辆行驶的复杂路面工况。建立了八轮重型装甲车的整车悬架模型, 实现了对起伏路面非高斯性能的准确表征, 提出了针对非高斯随机路面的模糊自适应悬架振动控制策略。仿真结果表明: 所提出的控制策略可在装甲车所行驶的实际路面工况下对整车起到良好的减振效果, 为八轮装甲车辆的减振控制奠定了理论基础。
  • 图  1  车辆运动坐标系

    Figure  1.  Vehicle motion coordinate system

    图  2  八轮重型车辆整车悬架模型

    Figure  2.  Whole vehicle suspension model of eight wheeled heavy armored vehicle

    图  3  非高斯载荷信号

    Figure  3.  Non-Gaussian load signal

    图  4  高斯载荷信号

    Figure  4.  Gaussian load signal

    图  5  功率谱密度

    Figure  5.  Power spectral density

    图  6  振幅概率密度分布

    Figure  6.  Amplitude probability density distribution

    图  7  非高斯随机路面信号

    Figure  7.  Non-Gaussian random road signal

    图  8  磁流变半主动悬架控制系统框图

    Figure  8.  Block diagram of magnetorheological semi-active suspension control system

    图  9  天棚控制策略理想模型

    Figure  9.  Ideal model of sky-hook control

    图  10  高斯随机路面激励下车辆质心处振动速度

    Figure  10.  Vibration velocity at the center of mass of the vehicle under Gaussian random road excitation

    图  11  高斯随机路面激励下车辆质心处振动位移

    Figure  11.  Vibration displacement at the center of mass of the vehicle under Gaussian random road excitation

    图  12  非高斯随机路面激励下车辆质心处振动速度

    Figure  12.  Vibration velocity at the center of mass of a vehicle under non-Gaussian random road excitation

    图  13  非高斯随机路面激励下车辆质心处振动位移

    Figure  13.  Vibration displacement at the center of mass of the vehicle under non-Gaussian random road excitation

    图  14  改进后非高斯随机路面激励下车辆质心处振动速度

    Figure  14.  Vibration velocity at the centroid of the vehicle under improved non-Gaussian random road excitation

    图  15  改进后非高斯随机路面激励下车辆质心处振动位移

    Figure  15.  Vibration displacement at the center of mass of the vehicle under improved non-Gaussian random road excitation

    表  1  高斯随机路面不同控制策略效果比较

    Table  1.   Comparison of effects of different control strategies on Gaussian random road surface

    高斯随机信号 速度 位移
    被动控制 0.225 9 m/s 0.037 2 m
    天棚控制 0.209 9 m/s 0.0335 m
    天棚控制改善比例 -7.08% -9.95%
    模糊控制 0.189 6 m/s 0.0318 m
    模糊控制改善比例 -16.06% -14.52%
    下载: 导出CSV

    表  2  非高斯随机路面不同控制策略效果比较

    Table  2.   Comparison of the effects of different control strategies on non Gaussian random road surfaces

    非高斯随机信号 速度 位移
    被动控制 0.266 7 m/s 0.022 7 m
    天棚控制 0.247 2 m/s 0.021 0 m
    天棚控制改善比例 -7.31% -7.49%
    模糊控制 0.251 2 m/s 0.021 4 m
    模糊控制改善比例 -5.81% -5.72%
    模糊自适应 0.230 2 m/s 0.020 1 m
    模糊自适应改善比例 -13.69% -11.45%
    下载: 导出CSV
  • [1] 丁法乾. 履带式装甲车辆悬挂系统动力学[M]. 北京: 国防工业出版社, 2004.

    DING F Q. Dynamics of tracked armored vehicle suspension system[M]. Beijing: National Defense Industry Press, 2004. (in Chinese)
    [2] 祁宏钟, 雷雨成, 吴云飞, 等. 某悬架减振器的精确建模及仿真[J]. 机械科学与技术, 2002, 21(5): 714-716. doi: 10.3321/j.issn:1003-8728.2002.05.010

    QI H Z, LEI Y C, WU Y F, et al. Precise modeling and simulation of a kind of suspension absorber[J]. Mechanical Science and Technology for Aerospace Engineering, 2002, 21(5): 714-716. (in Chinese) doi: 10.3321/j.issn:1003-8728.2002.05.010
    [3] 刘玉霞. 基于整车动力学的轮式装甲车动力装置减振优化[D]. 武汉: 华中科技大学, 2018.

    LIU Y X. Vibration optimization of powertrain mounting for wheeled panzer based on whole-vehicle dynamics[D]. Wuhan: Huazhong University of Science and Technology, 2018. (in Chinese)
    [4] 陈花玲, 胡选利, 张铁山, 等. 履带式装甲车甲板振动强度测量与减振研究[J]. 振动与冲击, 1996, 15(3): 76-82. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ603.017.htm

    CHEN H L, HU X L, ZHANG T S, et al. Study on vibration intensity measurement and vibration reduction of tracked armored vehicle deck[J]. Journal of Vibration and Shock, 1996, 15(3): 76-82. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ603.017.htm
    [5] 刘非. 轮式装甲车磁流变半主动悬架控制系统设计[D]. 重庆: 重庆大学, 2012.

    LIU F. Design of magnetorheological semi-active suspension control system in wheeled armored vehicles[D]. Chongqing: Chongqing University, 2012. (in Chinese)
    [6] 刘振旺. 某装甲车车内隔振降噪特性研究[D]. 太原: 中北大学, 2008.

    LIU Z W. Research of vibration isolation and noise reduction performance of armored vehicles' inside[D]. Taiyuan: North University of China, 2018. (in Chinese)
    [7] 胡国良, 林豪, 李刚. 采用磁流变阻尼器的三自由度半主动座椅悬架系统变论域模糊控制[J]. 机械科学与技术, 2020, 39(3): 425-432. doi: 10.13433/j.cnki.1003-8728.20190127

    HU G L, LIN H, LI G. Variable universe fuzzy control of 3-DOF semi-active seat suspension system using magnetorheological damper[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(3): 425-432. (in Chinese) doi: 10.13433/j.cnki.1003-8728.20190127
    [8] 毕凤荣, 石纯放, 梁永勤. 悬架系统非线性减振器阻尼值变化系数对整车振动影响的研究[J]. 机械科学与技术, 2017, 36(9): 1421-1427. doi: 10.13433/j.cnki.1003-8728.2017.0918

    BI F R, SHI C F, LIANG Y Q. Research on effect of variation coefficient of nonlinear suspension system of shock absorber damping values on vehicle vibration[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(9): 1421-1427. (in Chinese) doi: 10.13433/j.cnki.1003-8728.2017.0918
    [9] 寇发荣, 景强强, 马建, 等. 电磁混合主动悬架内分泌复合天地棚控制研究[J]. 机械科学与技术, 2020, 39(10): 1615-1623. doi: 10.13433/j.cnki.1003-8728.20190314

    KOU F R, JING Q Q, MA J, et al. Reserach on endocrine compound skyhook and groundhook control of electro-magnetic hybrid active suspension[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(10): 1615-1623. (in Chinese) doi: 10.13433/j.cnki.1003-8728.20190314
    [10] NING D H, SUN S S, WEI L D, et al. Vibration reduction of seat suspension using observer based terminal sliding mode control with acceleration data fusion[J]. Mechatronics, 2017, 44: 71-83.
    [11] 李金辉, 何杰, 李旭宏. 车辆随机及移动荷载作用下路面动态响应[J]. 长安大学学报(自然科学版), 2015, 35(2): 38-45. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201502008.htm

    LI J H, HE J, LI X H. Dynamic response of pavement under vehicle random load and moving constant load[J]. Journal of Chang'an University (Natural Science Edition), 2015, 35(2): 38-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201502008.htm
    [12] HU M J, PARK J H, CHENG J. Robust fuzzy delayed sampled-data control for nonlinear active suspension systems with varying vehicle load and frequency-domain constraint[J]. Nonlinear Dynamics, 2021, 105(3): 2265-2281.
    [13] WU J, ZHOU H L, LIU Z Y, et al. Ride comfort optimization via speed planning and preview semi-active suspension control for autonomous vehicles on uneven roads[J]. IEEE Transactions on Vehicular Technology, 2020, 69(8): 8343-8355.
    [14] MIL-STD-810F Department of defense test method standard for environmental engineering considerations and laboratory tests, USA, January, 2000.
    [15] ALEXANDER S. Random vibration testing beyond PSD limitations[D]. New Zealand: University of Auckland, 2014.
    [16] SLAVIĈ J, MRŠNIK M, ĈESNIK M, et al. Uniaxial vibration fatigue[M]//SLAVIĈ J, MRŠNIK M, ĈESNIK M, et al. Vibration Fatigue by Spectral Methods. Amsterdam: Elsevier, 2021: 99-113.
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  173
  • HTML全文浏览量:  180
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-25
  • 刊出日期:  2023-10-25

目录

    /

    返回文章
    返回