留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改进条件对抗网络在小样本故障诊断中的研究

谢由生 张军

谢由生,张军. 改进条件对抗网络在小样本故障诊断中的研究[J]. 机械科学与技术,2023,42(11):1904-1911 doi: 10.13433/j.cnki.1003-8728.20220135
引用本文: 谢由生,张军. 改进条件对抗网络在小样本故障诊断中的研究[J]. 机械科学与技术,2023,42(11):1904-1911 doi: 10.13433/j.cnki.1003-8728.20220135
XIE Yousheng, ZHANG Jun. Research on Improved Conditional Generative Adversarial Network for Small Sample Fault Diagnosis[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(11): 1904-1911. doi: 10.13433/j.cnki.1003-8728.20220135
Citation: XIE Yousheng, ZHANG Jun. Research on Improved Conditional Generative Adversarial Network for Small Sample Fault Diagnosis[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(11): 1904-1911. doi: 10.13433/j.cnki.1003-8728.20220135

改进条件对抗网络在小样本故障诊断中的研究

doi: 10.13433/j.cnki.1003-8728.20220135
基金项目: 国家创新方法工作专项(2018IM010500)与安徽省科技重大专项计划项目(16030901012)
详细信息
    作者简介:

    谢由生(1995−),硕士,研究方向为故障诊断,xie-ys@foxmail.com

    通讯作者:

    张军,教授,硕士生导师,zhj63@163.com

  • 中图分类号: TG156

Research on Improved Conditional Generative Adversarial Network for Small Sample Fault Diagnosis

  • 摘要: 在实际智能设备的故障诊断中,往往很难获得大量的故障样本,这对基于机器学习的故障诊断的分类精度造成不可估量的影响。为了提高小样本情况下的故障诊断精度,提出一种基于条件对抗网络的生成模型(Conditional generative adversarial networks-gradient penalty, CGAN-GP),用于数据增强来获得充足的故障样本。CGAN-GP利用二维卷积,学习预处理后获得的二维故障样本的分布特性,生成与真实样本相似的样本,并使用Wasserstein距离和梯度惩罚(Gradient penalty, GP)策略解决模型训练中的问题,同时将故障样本的标签信息输入模型引导模型生成特定的故障样本,实现一个模型可生成多种故障样本,并且在CWRU轴承数据集上得以验证。研究表明提出的模型可以生成与真实样本特征相似的高质量样本,能够有效提高小样本情况下故障诊断的识别率。
  • 图  1  GAN和CGAN模型结构

    Figure  1.  GAN and CGAN model structures

    图  2  CGAN-GP模型训练流程

    Figure  2.  CGAN-GP model training process

    图  3  故障诊断流程

    Figure  3.  Fault diagnosis process

    图  4  CWRU轴承实验平台[14]

    Figure  4.  CWRU bearing experimental platform

    图  5  真实样本转换后的灰度图

    Figure  5.  Gray scale image after real sample conversion

    图  6  CGAN-GP中生成模型的训练损失

    Figure  6.  Training loss of the model generated in CGAN-GP

    图  7  真实样本与生成样本对比

    Figure  7.  Comparison between real samples and generated samples

    图  8  t-sne可视化生成样本和真实样本

    Figure  8.  t-sne visualization-generated samples and real samples

    图  9  故障诊断模型在各训练集的损失及在验证集上的准确率

    Figure  9.  Loss of the fault diagnosis model in each training set and its accuracy on accuracy validation set

    图  10  各故障诊断模型在测试集上的准确率

    Figure  10.  Accuracy of each fault diagnosis model on the test set

    图  11  各故障诊断模型在测试集上诊断结果的混淆矩阵

    Figure  11.  Confusion matrix of diagnostic results for each fault diagnosis model on the test set

    表  1  CGAN-GP具体参数

    Table  1.   Specific parameters of CGAN-GP

    层数生成模型判别模型
    1 全连接层 Conv4_32
    2 BatchNorm LeakyReLU层
    3 上采样层 Conv4_64
    4 Conv3_128 LeakyReLU层
    5 BatchNorm Conv4_128
    6 ReLU层 LeakyReLU层
    7 上采样层 Conv4_256
    8 Conv3_64 LeakyReLU层
    9 BatchNorm Conv4_1
    10 ReLU层
    11 上采样层
    12 Conv3_64
    13 BatchNorm
    14 ReLU层
    15 上采样层
    16 Conv3_1
    17 Tanh层
    下载: 导出CSV

    表  2  故障类别及对应标签

    Table  2.   Fault categories and corresponding labels

    标签故障位置故障尺寸/mm
    0(b007) 滚动体 0.1800
    1(b014) 滚动体 0.3556
    2(b021) 滚动体 0.7112
    3(ir007) 内圈 0.1800
    4(ir014) 内圈 0.3556
    5(ir021) 内圈 0.7112
    6(normal) 正常
    7(or007) 外圈 0.1800
    8(or014) 外圈 0.3556
    9(or021) 外圈 0.7112
    下载: 导出CSV

    表  3  不同方法的生成样本对比

    Table  3.   Comparison of generated samples using different methods

    标签CGAN-GPCGAN
    EDCDEDCD
    0(b007) 0.537087 0.029969 0.551945 0.035627
    2(b021) 0.538866 0.037499 0.560798 0.039045
    4(ir014) 0.528053 0.036538 0.608441 0.048488
    6(normal) 0.862965 0.101061 0.765576 0.078399
    8(or014) 0.562402 0.040803 0.591200 0.046606
    下载: 导出CSV

    表  4  故障诊断模型实验分组

    Table  4.   Experimental grouping of fault diagnosis model

    分组 训练集模型名称
    真实样本生成样本
    A0100g100
    B0400g400
    C0600g600
    D0800g800
    E500r50
    F50100r50_g100
    G50400r50_g400
    H50600r50_g600
    I50800r50_g800
    下载: 导出CSV
  • [1] CHEN X F, WANG S B, QIAO B J, et al. Basic research on machinery fault diagnostics: past, present, and future trends[J]. Frontiers of Mechanical Engineering, 2018, 13(2): 264-291. doi: 10.1007/s11465-018-0472-3
    [2] 叶壮, 余建波. 基于多通道加权卷积神经网络的齿轮箱振动信号特征提取[J]. 机械工程学报, 2021, 57(1): 110-120. doi: 10.3901/JME.2021.01.110

    YE Z, YU J B. Feature extraction of gearbox vibration signals based on multi-channels weighted convolutional neural network[J]. Journal of Mechanical Engineering, 2021, 57(1): 110-120. (in Chinese) doi: 10.3901/JME.2021.01.110
    [3] 齐咏生, 樊佶, 李永亭, 等. 一种改进的解卷积算法及其在滚动轴承复合故障诊断中的应用[J]. 振动与冲击, 2020, 39(21): 140-150. doi: 10.13465/j.cnki.jvs.2020.21.019

    QI Y S, FAN J, LI Y T, et al. An improved deconvolution algorithm and its application in compound fault diagnosis of rolling bearing[J]. Journal of Vibration and Shock, 2020, 39(21): 140-150. (in Chinese) doi: 10.13465/j.cnki.jvs.2020.21.019
    [4] WEN L, LI X Y, GAO L, et al. A new convolutional neural network-based data-driven fault diagnosis method[J]. IEEE Transactions on Industrial Electronics, 2018, 65(7): 5990-5998. doi: 10.1109/TIE.2017.2774777
    [5] SHAO H D, JIANG H K, ZHANG H Z, et al. Rolling bearing fault feature learning using improved convolutional deep belief network with compressed sensing[J]. Mechanical Systems and Signal Processing, 2018, 100: 743-765. doi: 10.1016/j.ymssp.2017.08.002
    [6] ZHANG K, TANG B P, DENG L, et al. A hybrid attention improved ResNet based fault diagnosis method of wind turbines gearbox[J]. Measurement, 2021, 179: 109491. doi: 10.1016/j.measurement.2021.109491
    [7] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal: MIT Press, 2014: 2672-2680.
    [8] LUO J, HUANG J Y, LI H M. A case study of conditional deep convolutional generative adversarial networks in machine fault diagnosis[J]. Journal of Intelligent Manufacturing, 2021, 32(2): 407-425. doi: 10.1007/s10845-020-01579-w
    [9] SHAO S Y, WANG P, YAN R Q. Generative adversarial networks for data augmentation in machine fault diagnosis[J]. Computers in Industry, 2019, 106: 85-93. doi: 10.1016/j.compind.2019.01.001
    [10] MIRZA M, OSINDERO S. Conditional generative adversarial nets[J]. Computing Research Repository, 2014, abs/1411.1784.
    [11] ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein generative adversarial networks[C]//Proceedings of the 34th International Conference on Machine Learning. Sydney: PMLR, 2017: 214-223.
    [12] GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of wasserstein GANs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: Curran Associates Inc. , 2017: 5769-5779.
    [13] KINGMA D P, BA J. ADAM: a method for stochastic optimization[C]//Proceedings of the 3rd International Conference on Learning Representations. San Diego: ICLR, 2014.
    [14] SMITH W A, RANDALL R B. Rolling element bearing diagnostics using the Case Western Reserve University data: a benchmark study[J]. Mechanical Systems and Signal Processing, 2015, 64-65: 100-131. doi: 10.1016/j.ymssp.2015.04.021
    [15] VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(86): 2579-2605.
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  106
  • HTML全文浏览量:  72
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-27
  • 刊出日期:  2023-11-30

目录

    /

    返回文章
    返回