留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电火花线切割加工单步制备超疏水表面研究

陈志 吴程 颜昭君 周洪冰

陈志, 吴程, 颜昭君, 周洪冰. 电火花线切割加工单步制备超疏水表面研究[J]. 机械科学与技术, 2023, 42(10): 1665-1672. doi: 10.13433/j.cnki.1003-8728.20220134
引用本文: 陈志, 吴程, 颜昭君, 周洪冰. 电火花线切割加工单步制备超疏水表面研究[J]. 机械科学与技术, 2023, 42(10): 1665-1672. doi: 10.13433/j.cnki.1003-8728.20220134
CHEN Zhi, WU Cheng, YAN Zhaojun, ZHOU Hongbing. One-step Fabrication for Superhydrophobic Surface with Wire Electrical Discharge Machining[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(10): 1665-1672. doi: 10.13433/j.cnki.1003-8728.20220134
Citation: CHEN Zhi, WU Cheng, YAN Zhaojun, ZHOU Hongbing. One-step Fabrication for Superhydrophobic Surface with Wire Electrical Discharge Machining[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(10): 1665-1672. doi: 10.13433/j.cnki.1003-8728.20220134

电火花线切割加工单步制备超疏水表面研究

doi: 10.13433/j.cnki.1003-8728.20220134
基金项目: 

国家自然科学基金项目 51805552

湖南省自然科学基金项目 2020JJ5721

详细信息
    作者简介:

    陈志(1990-), 副教授, 博士, 研究方向为精密电火花加工与材料及构件表面工程, 18202764498@163.com

  • 中图分类号: V261.6

One-step Fabrication for Superhydrophobic Surface with Wire Electrical Discharge Machining

  • 摘要: 超疏水表面具有自清洁、减霜防冰等优良特性,在航空航天、武器装备等领域具有广泛的应用前景。针对传统超疏水表面制备工艺复杂、成本高、耐磨性差等问题,提出电火花线切割加工单步制备主级表面织构和次级放电凹坑/凸起表面形貌形成多级分层结构获得超疏水表面的新方法,主要研究内容包括:研究特定参数下线切割加工工件表面特性,获得工件加工平面的表观接触角与微观形貌;开展3种表面织构的尺寸设计,预测工件表面的实际尺寸;建立接触角仿真模型并进行仿真,分析表面织构类型和尺寸对接触角的影响规律;开展工件表面接触角的实验研究,实验结果表明:工件表面的最大接触角为152.5°,仿真接触角与实验值的相对误差低于6%。
  • 图  1  AU300i型慢走丝线切割机图

    Figure  1.  AU300i type slow-walking wire cutting machine

    图  2  平面切割工件表面表观接触角

    Figure  2.  Surface apparent contact angle of plane-cut workpiece

    图  3  工件表面形貌SEM观测图

    Figure  3.  SEM observation of workpiece surface morphology

    图  4  3种表面织构的结构参数示意图

    Figure  4.  Schematic diagram of structural parameters of three surface textures

    图  5  固液接触角仿真模型

    Figure  5.  Simulation model of solid-liquid contact angle

    图  6  三角形表面织构固液接触角仿真结果

    Figure  6.  Simulation results on solid-liquid contact angle of triangular surface texture

    图  7  梯形表面织构固液接触角仿真结果

    Figure  7.  Simulation results on solid-liquid contact angle of trapezoidal surface texture

    图  8  矩形表面织构固液接触角仿真结果

    Figure  8.  Simulation results on solid-liquid contact angle of rectangular surface texture

    图  9  三角形表面织构接触角测量结果

    Figure  9.  Measurement results on contact angle of triangular surface texture

    图  10  梯形表面织构接触角测量结果

    Figure  10.  Contact angle measurement results of trapezoidal surface texture

    图  11  矩形表面织构接触角测量结果

    Figure  11.  Contact angle measurement results of rectangular surface texture

    图  12  3种表面织构实验接触角与仿真接触角对比折线图

    Figure  12.  Line chart of comparison between experimental contact angles and simulated contact angles of three surface textures

    表  1  3种表面织构尺寸设计表

    Table  1.   Table of three surface texture size design

    序号 三角形表面织构 梯形表面织构 矩形表面织构
    la/mm ha/mm lb/mm θb/(°) xb/mm lc/mm Dc/mm hc/mm
    1 0.7 0.8 0.8 60 0.8 0.25 0.8 0.4
    2 0.6 0.72 0.8 60 1.0 0.25 1.0 0.4
    3 0.6 0.58 1.0 60 1.0 0.25 1.2 0.4
    4 0.6 0.44 1.0 60 1.2 0.4 0.8 0.4
    5 0.6 0.3 1.2 60 1.2 0.4 1.0 0.4
    6 0.7 0.3 1.2 45 1.2
    下载: 导出CSV

    表  2  3种表面织构尺寸预测表

    Table  2.   Table of three surface texture size prediction

    序号 三角形表面织构 梯形表面织构 矩形表面织构
    la/mm ha/mm lb/mm θb/(°) xb/mm lc/mm Dc/mm hc/mm
    1 0.7 0.8 0.8 60 0.8 0.25 0.8 0.4
    2 0.6 0.72 0.8 60 1.0 0.25 1.0 0.4
    3 0.6 0.58 1.0 60 1.0 0.25 1.2 0.4
    4 0.6 0.44 1.0 60 1.2 0.4 0.8 0.4
    5 0.6 0.3 1.2 60 1.2 0.4 1.0 0.4
    6 0.7 0.3 1.2 45 1.2
    下载: 导出CSV

    表  3  3种表面织构实际几何尺寸与预测尺寸相对误差

    Table  3.   Relative error between the actual geometry size and the predicted size of three surface textures

    序号 三角形表面织构 梯形表面织构 矩形表面织构
    ha/mm ha*/mm h|/mm θb/(°) θb*/(°) Δθ/(°) lc/mm lc*/mm lc|/mm
    1 0.65 0.46 0.19 55 55.5 0.5 0.23 0.23 0
    2 0.46 0.36 0.10 55 55 0 0.23 0.23 0
    3 0.37 0.34 0.03 55 55.5 0.5 0.23 0.22 0.01
    4 0.27 0.26 0.01 55 55 0 0.42 0.41 0.01
    5 0.17 0.19 0.02 55 55 0 0.42 0.43 0.01
    6 0.18 0.22 0.04 45 45 0
    下载: 导出CSV
  • [1] AVRǍMESCU R E, GHICA M V, DINU-PÎRVU C, et al. Superhydrophobic natural and artificial surfaces-a structural approach[J]. Materials, 2018, 11(5): 866. doi: 10.3390/ma11050866
    [2] LIAO R J, LI C, YUAN Y, et al. Anti-icing performance of ZnO/SiO2/PTFE sandwich-nanostructure superhydrophobic film on glass prepared via RF magnetron sputtering[J]. Materials Letters, 2017, 206: 109-112. doi: 10.1016/j.matlet.2017.06.127
    [3] GUO F, WEN Q Y, PENG Y B, et al. Multifunctional hollow superhydrophobic SiO2 microspheres with robust and self-cleaning and separation of oil/water emulsions properties[J]. Journal of Colloid and Interface Science, 2017, 494: 54-63. doi: 10.1016/j.jcis.2017.01.070
    [4] BIXLER G D, BHUSHAN B. Fluid drag reduction and efficient self-cleaning with rice leaf and butterfly wing bioinspired surfaces[J]. Nanoscale, 2013, 5(17): 7685-7710. doi: 10.1039/c3nr01710a
    [5] ZHANG X, SHI F, NIU J, et al. Superhydrophobic surfaces: from structural control to functional application[J]. Journal of Materials Chemistry, 2008, 18(6): 621-633. doi: 10.1039/B711226B
    [6] 吴春亚, 黄俊杰, 李曦光, 等. 金属基超疏水表面的制备技术研究新进展[J]. 哈尔滨工业大学学报, 2021, 53(7): 1-19, doi: 10.11918/202005144.

    WU C Y, HUANG J J, LI X G, et al. New progress in preparation of metal based superhydrophobic surfaces[J]. Journal of Harbin Institute of Technology, 2021, 53(7): 1-19, doi: 10.11918/202005144.(in Chinese)
    [7] ZHENG X L, WENG J B, HU B H, et al. Fabrication of a stable superhydrophobic film constructed by poly(vinylpyrrolidone)/poly(urushiol)-CuS through layer-by-layer assembly[J]. Materials Chemistry and Physics, 2011, 130(3): 1054-1060. doi: 10.1016/j.matchemphys.2011.08.032
    [8] YEGANEH M, OMIDI M, ESKANDARI M. Superhydrophobic surface of AZ31 Alloy fabricated by chemical treatment in the NiSO4solution[J]. Journal of Materials Engineering and Performance, 2018, 27(8): 3951-3960. doi: 10.1007/s11665-018-3479-3
    [9] MOHAMED M E, ABD-EL-NABEY B A. Facile and eco-friendly method for fabrication of superhydrophobic surface on copper metal[J]. ECS Journal of Solid State Science and Technology, 2020, 9(6): 061006, doi: 10.1149/2162-8777/ab9dc7.
    [10] CREDI C, PINTOSSI C, BIANCHI C L, et al. Combining stereolithography and replica molding: on the way to superhydrophobic polymeric devices for photovoltaics[J]. Materials & Design, 2017, 133: 143-153.
    [11] ZHU Y, HE Y, ZHANG J F, et al. Preparation of large-scale, durable, superhydrophobic PTFE films using rough glass templates[J]. Surface and Interface Analysis, 2017, 49(13): 1422-1430. doi: 10.1002/sia.6273
    [12] ŽEMAITIS A, MIMIDIS A, PAPADOPOULOS A, et al. Controlling the wettability of stainless steel from highly-hydrophilic to super-hydrophobic by femtosecond laser-induced ripples and nanospikes[J]. RSC Advances, 2020, 10(62): 37956-37961. doi: 10.1039/D0RA05665K
    [13] QIU R X, LI C, TONG W, et al. High-speed wire electrical discharge machining to create superhydrophobic surfaces for magnesium alloys with high corrosion and wear resistance[J]. Materials and Corrosion, 2020, 71(10): 1711-1720. doi: 10.1002/maco.202011807
    [14] 于福鑫. 基于电火花加工方法的铍铜材料超疏水表面减阻性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    YU F X. Study on drag reduction performance of superhydrophobic surface machined by EDM of beryllium copper alloy[D]. Harbin: Harbin Institute of Technology, 2019. (in Chinese)
    [15] VIJAYABHASKAR S, RAJMOHAN T. Experimental investigation and optimization of machining parameters in WEDM of Nano-SiC particles reinforced magnesium matrix composites[J]. Silicon, 2019, 11(4): 1701-1716. doi: 10.1007/s12633-017-9676-0
    [16] BORMASHENKO E. Progress in understanding wetting transitions on rough surfaces[J]. Advances in Colloid and Interface Science, 2015, 222: 92-103. doi: 10.1016/j.cis.2014.02.009
    [17] PAPADOPOULOS P, MAMMEN L, DENG X, et al. How superhydrophobicity breaks down[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(9): 3254-3258.
    [18] BANERJEE S, DIONYSIOU D D, PILLAI S C. Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis[J]. Applied Catalysis B: Environmental, 2015, 176-177: 396-428. doi: 10.1016/j.apcatb.2015.03.058
    [19] ISHFAQ K, ANWAR S, ALI M A, et al. Optimization of WEDM for precise machining of novel developed Al6061-7.5% SiC squeeze-casted composite[J]. International Journal of Advanced Manufacturing Technology, 2020, 111(7-8): 2031-2049. doi: 10.1007/s00170-020-06218-5
    [20] 梅宇超. 提高电火花线切割加工精度的措施研究[J]. 机电信息, 2019(32): 114-115. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXX201932066.htm

    MEI Y C. Research on the measures to improve the machining accuracy of WEDM[J]. Mechanical and Electrical Information, 2019(32): 114-115. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JDXX201932066.htm
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  64
  • HTML全文浏览量:  74
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-27
  • 刊出日期:  2023-10-25

目录

    /

    返回文章
    返回