留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

采用黑洞-连续蚁群算法的数控车床切削参数优化

赵义豪 徐莉萍 张朝阳 李健 何奎

赵义豪, 徐莉萍, 张朝阳, 李健, 何奎. 采用黑洞-连续蚁群算法的数控车床切削参数优化[J]. 机械科学与技术, 2023, 42(10): 1705-1711. doi: 10.13433/j.cnki.1003-8728.20220132
引用本文: 赵义豪, 徐莉萍, 张朝阳, 李健, 何奎. 采用黑洞-连续蚁群算法的数控车床切削参数优化[J]. 机械科学与技术, 2023, 42(10): 1705-1711. doi: 10.13433/j.cnki.1003-8728.20220132
ZHAO Yihao, XU Liping, ZHANG Chaoyang, LI Jian, HE Kui. Optimization of Cutting Parameters of CNC Lathe Using Black Hole-continuous Ant Colony Algorithm[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(10): 1705-1711. doi: 10.13433/j.cnki.1003-8728.20220132
Citation: ZHAO Yihao, XU Liping, ZHANG Chaoyang, LI Jian, HE Kui. Optimization of Cutting Parameters of CNC Lathe Using Black Hole-continuous Ant Colony Algorithm[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(10): 1705-1711. doi: 10.13433/j.cnki.1003-8728.20220132

采用黑洞-连续蚁群算法的数控车床切削参数优化

doi: 10.13433/j.cnki.1003-8728.20220132
基金项目: 

国家重点研发计划项目 2018YFB1701205

详细信息
    作者简介:

    赵义豪(1996-), 硕士研究生, 研究方向为绿色制造, zyhhkd@163.com

    通讯作者:

    徐莉萍, 副教授, 硕士生导师, xlpzz@163.com

  • 中图分类号: TH16

Optimization of Cutting Parameters of CNC Lathe Using Black Hole-continuous Ant Colony Algorithm

  • 摘要: 为实现数控车床加工能效和加工质量的多目标优化,提出了一种对车削参数进行优化的黑洞-连续蚁群优化算法ACOR(Black hole-continuous ant colony optimization algorithm)。首先,以最低切削比能和最小表面粗糙度为优化目标,建立了数控车床材料切削阶段的多目标优化模型;其次,引入黑洞算法对连续蚁群算法进行改进,构建了适用于多目标优化的黑洞-连续蚁群算法;最后,利用黑洞-连续蚁群算法对数控车床切削阶段的切削参数进行了寻优,并将优化结果与其它优化算法进行对比分析。分析结果表明,黑洞-连续蚁群算法不仅具有良好的全局搜索能力,寻优能力也较其它算法有所提升,能够为制造业提高生产能效和加工质量提供新的解决思路。
  • 图  1  切削比能的预测值和试验值对比

    Figure  1.  Comparison of predictive and experimental values of cutting specific energy

    图  2  解档案的构造

    Figure  2.  Construction of solution files

    图  3  黑洞-连续蚁群算法流程图

    Figure  3.  BH-ACOR flow chart

    图  4  迭代50次时的搜索结果

    Figure  4.  Search results for 50 iterations

    图  5  迭代100次时的搜索结果

    Figure  5.  Search results for 100 iterations

    图  6  迭代200次时的搜索结果

    Figure  6.  Search results for 200 iterations

    图  7  BH-ACOR与其它算法优化结果对比图

    Figure  7.  Comparison of optimization results between BH-ACOR and other algorithms

    表  1  试验数据[20]

    Table  1.   Test data

    序号 vc/(m·min-1) f/(mm·r-1) ap/mm Pc/W CMRR/(mm3·s-1) QSEC/(J·mm-3)
    1 100 0.05 0.2 731.83 16.67 43.90
    2 100 0.10 0.3 854.15 50.00 17.14
    3 100 0.15 0.4 996.15 100.00 10.02
    4 100 0.20 0.5 1 216.55 166.67 7.35
    5 150 0.05 0.3 879.12 37.50 23.50
    6 150 0.10 0.2 883.08 50.00 17.57
    7 150 0.15 0.5 1 222.98 187.50 6.57
    8 150 0.20 0.4 1 244.43 200.00 6.22
    9 200 0.05 0.4 998.09 66.67 15.06
    10 200 0.10 0.5 1 200.16 166.67 7.26
    11 200 0.15 0.2 991.34 100.00 9.84
    12 200 0.20 0.3 1 212.01 200.00 6.02
    13 250 0.05 0.5 1 133.20 104.17 10.99
    14 250 0.10 0.4 1 246.14 166.67 7.48
    15 250 0.15 0.3 1 252.12 187.50 6.64
    16 250 0.20 0.2 1 184.28 166.67 7.02
    下载: 导出CSV

    表  2  黑洞-连续蚁群算法参数设置

    Table  2.   BH-ACOR parameter settings

    参数 数值
    迭代次数 200
    初始种群数k 10
    强化因子q 0.5
    偏移距离比ζ 0.8
    下载: 导出CSV

    表  3  不同权重下的优化结果

    Table  3.   Optimization results under different weights

    c vc/(m·min-1) f/(mm·r-1) ap/mm QSEC/(J·mm-3) Ra/μm
    0.1 250 0.050 0.22 20.16 0.42
    0.2 250 0.050 0.27 17.61 0.45
    0.3 249.98 0.050 0.44 11.96 0.57
    0.4 249.97 0.057 0.47 9.89 0.66
    0.5 249.94 0.067 0.48 8.47 0.73
    0.6 249.99 0.089 0.49 6.79 0.89
    0.7 250 0.096 0.50 6.27 1.13
    0.8 250 0.136 0.49 4.68 1.21
    0.9 250 0.198 0.50 3.40 1.64
    下载: 导出CSV

    表  4  优化结果对比

    Table  4.   Comparison of optimization results

    状态 vc/(m·min-1) f/(mm·r-1) ap/mm QSEC/(J·mm-3) Ra/μm
    优化前 200.00 0.150 0.20 9.91 1.19
    优化后 249.94 0.067 0.48 8.47 0.73
    下载: 导出CSV
  • [1] 李涛, 孔露露, 张洪潮, 等. 典型切削机床能耗模型的研究现状及发展趋势[J]. 机械工程学报, 2014, 50(7): 102-111. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201407014.htm

    LI T, KONG L L, ZHANG H C, et al. Recent research and development of typical cutting machine tool's energy consumption model[J]. Journal of Mechanical Engineering, 2014, 50(7): 102-111. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201407014.htm
    [2] 刘飞, 徐宗俊, 但斌, 等. 机械加工系统能量特性及其应用[M]. 北京: 机械工业出版社, 1995: 9.

    LIU F, XU Z J, DAN B, et al. Energy characteristics and applications of machining systems[M]. Beijing: China Machine Press, 1995: 9. (in Chinese)
    [3] NEWMAN S T, NASSEHI A, IMANI-ASRAI R, et al. Energy efficient process planning for CNC machining[J]. CIRP Journal of Manufacturing Science and Technology, 2012, 5(2): 127-136. doi: 10.1016/j.cirpj.2012.03.007
    [4] KARA S, LI W. Unit process energy consumption models for material removal processes[J]. CIRP Annals, 2011, 60(1): 37-40. doi: 10.1016/j.cirp.2011.03.018
    [5] 张洪潮, 孔露露, 李涛, 等. 切削比能模型的建立及参数影响分析[J]. 中国机械工程, 2015, 26(8): 1098-1104. doi: 10.3969/j.issn.1004-132X.2015.08.019

    ZHANG H C, KONG L L, LI T, et al. SCE modeling and influencing trend analysis of cutting parameters[J]. China Mechanical Engineering, 2015, 26(8): 1098-1104. (in Chinese) doi: 10.3969/j.issn.1004-132X.2015.08.019
    [6] 徐敬通, 李涛, 陈俊超, 等. 数控机床的能耗模型及实验研究[J]. 中南大学学报(自然科学版), 2017, 48(8): 2024-2033. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201708010.htm

    XU J T, LI T, CHEN J C, et al. An energy consumption model and experimental research of numerical control machine tools[J]. Journal of Central South University (Science and Technology), 2017, 48(8): 2024-2033. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201708010.htm
    [7] SU Y, LI C B, ZHAO G Y, et al. Prediction models for specific energy consumption of machine tools and surface roughness based on cutting parameters and tool wear[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2021, 235(6-7): 1225-1234. doi: 10.1177/0954405420971064
    [8] ZHOU L R, LI J F, LI F Y, et al. An improved cutting power model of machine tools in milling process[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91(5-8): 2383-2400. doi: 10.1007/s00170-016-9929-x
    [9] ZHONG Q Q, TANG R Z, LYU J X, et al. Evaluation on models of calculating energy consumption in metal cutting processes: a case of external turning process[J]. The International Journal of Advanced Manufacturing Technology, 2016, 82(9-12): 2087-2099. doi: 10.1007/s00170-015-7477-4
    [10] CAMPOSECO-NEGRETE C, DE DIOS CALDERÓN-NÁJERA J. Sustainable machining as a mean of reducing the environmental impacts related to the energy consumption of the machine tool: a case study of AISI 1045 steel machining[J]. The International Journal of Advanced Manufacturing Technology, 2019, 102(1-4): 27-41. doi: 10.1007/s00170-018-3178-0
    [11] NAN X, ZHOU J F, ZHENG B R. Selection of optimum turning parameters based on cooperative optimization of minimum energy consumption and high surface quality[J]. Procedia CIRP, 2018, 72: 1469-1474. doi: 10.1016/j.procir.2018.03.099
    [12] SONG L J, SHI J, PAN A D, et al. A dynamic multi-Swarm particle swarm optimizer for multi-objective optimization of machining operations considering efficiency and energy consumption[J]. Energies, 2020, 13(10): 2616. doi: 10.3390/en13102616
    [13] LI B, TIAN X T, ZHANG M. Modeling and multi-objective optimization method of machine tool energy consumption considering tool wear[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2022, 9(1): 127-141. doi: 10.1007/s40684-021-00320-z
    [14] DORIGO M, GAMBARDELLA L M. Ant colony system: a cooperative learning approach to the traveling salesman problem[J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 53-66. doi: 10.1109/4235.585892
    [15] 靳通通, 吴淑芳, 李松, 等. 面向主梁轻量化的改进连续域蚁群算法研究[J]. 机械设计与制造工程, 2019, 48(1): 9-13. https://www.cnki.com.cn/Article/CJFDTOTAL-JXZZ201901003.htm

    JIN T T, WU S F, LI S, et al. Research on improved ant colony algorithm for lightweight of main girders[J]. Machine Design and Manufacturing Engineering, 2019, 48(1): 9-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXZZ201901003.htm
    [16] 戴运桃, 赵希人, 刘利强. 基于分阶段搜索连续蚁群算法的船舶纵向运动参数辨识[J]. 船舶力学, 2010, 14(8): 872-878. https://www.cnki.com.cn/Article/CJFDTOTAL-CBLX201008007.htm

    DAI Y T, ZHAO X R, LIU L Q. Parameter identification of ship longitudinal motions using continuous ant colony algorithm with period searching[J]. Journal of Ship Mechanics, 2010, 14(8): 872-878. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CBLX201008007.htm
    [17] APOSTOLOS F, ALEXIOS P, GEORGIOS P, et al. Energy efficiency of manufacturing processes: a critical review[J]. Procedia CIRP, 2013, 7: 628-633. doi: 10.1016/j.procir.2013.06.044
    [18] CAO T K, LIU Y J, XU Y T. Cutting performance of tool with continuous lubrication at tool-chip interface[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2020, 7(2): 347-359. doi: 10.1007/s40684-019-00114-4
    [19] KUMAR R, BILGA P S, SINGH S. Multi objective optimization using different methods of assigning weights to energy consumption responses, surface roughness and material removal rate during rough turning operation[J]. Journal of Cleaner Production, 2017, 164: 45-57. doi: 10.1016/j.jclepro.2017.06.077
    [20] 崔峰. 面向低能耗和高表面质量的数控车削参数优化方法研究[D]. 延吉: 延边大学, 2018.

    CUI F. Research on NC turning parameter optimization method for low energy consumption and high surface quality[D]. Yanji: Yanbian University, 2018. (in Chinese)
    [21] HATAMLOU A. Black hole: a new heuristic optimization approach for data clustering[J]. Information Sciences, 2013, 222: 175-184.
    [22] BOUCHEKARA H R E H. Optimal design of electromagnetic devices using a black-hole-Based optimization technique[J]. IEEE Transactions on Magnetics, 2013, 49(12): 5709-5714. doi: 10.1109/TMAG.2013.2277694
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  91
  • HTML全文浏览量:  37
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-23
  • 刊出日期:  2023-10-25

目录

    /

    返回文章
    返回