留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合载荷下S135钻杆管体裂纹扩展与结构改进

费根胜 王从奎 曾宪林 唐穗欣 张义

费根胜, 王从奎, 曾宪林, 唐穗欣, 张义. 复合载荷下S135钻杆管体裂纹扩展与结构改进[J]. 机械科学与技术, 2023, 42(10): 1638-1647. doi: 10.13433/j.cnki.1003-8728.20220131
引用本文: 费根胜, 王从奎, 曾宪林, 唐穗欣, 张义. 复合载荷下S135钻杆管体裂纹扩展与结构改进[J]. 机械科学与技术, 2023, 42(10): 1638-1647. doi: 10.13433/j.cnki.1003-8728.20220131
FEI Gensheng, WANG Congkui, ZENG Xianlin, TANG Suixin, ZHANG Yi. Crack Propagation and Structural Improvement of S135 Drill Pipe Under Composite Loading[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(10): 1638-1647. doi: 10.13433/j.cnki.1003-8728.20220131
Citation: FEI Gensheng, WANG Congkui, ZENG Xianlin, TANG Suixin, ZHANG Yi. Crack Propagation and Structural Improvement of S135 Drill Pipe Under Composite Loading[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(10): 1638-1647. doi: 10.13433/j.cnki.1003-8728.20220131

复合载荷下S135钻杆管体裂纹扩展与结构改进

doi: 10.13433/j.cnki.1003-8728.20220131
基金项目: 

重庆市教育委员会科学技术研究项目项目 KJQN201901332

详细信息
    作者简介:

    费根胜(1979-), 高级工程师, 硕士, 研究方向为井下工具设计开发和有限元仿真计算分析, 120160323@wut.edu.cn

  • 中图分类号: TE938

Crack Propagation and Structural Improvement of S135 Drill Pipe Under Composite Loading

  • 摘要: 在轴向、弯曲和扭矩等多种载荷的循环复合作用下, 钻杆管体应力集中部位或材料缺陷处会产生裂纹萌生和疲劳裂纹扩展现象, 导致管体失效甚至断裂。以API S135钢级钻杆管体为研究对象, 通过单轴拉伸试验和裂纹扩展试验测试材料力学性能参数, 建立管体数值仿真模型, 并以管体疲劳失效案例作为验证对象来验证模型可行性。通过裂纹扩展数值模拟发现, 管体内加厚过渡消失区最容易断裂失效, 且载荷循环次数最低; 载荷应力比增大, 可以降低疲劳断裂失效风险。通过对管体内加厚过渡消失区结构改进设计发现: 改进管体内加厚锥部长度和管体外加厚锥部长度对管体最大应力和载荷循环次数改变不大, 而提高管体壁厚t后应力下降显著, 且载荷循环次数提高明显。因此提高管体壁厚t是更为有效的改进方式, 并通过正交实验对结构组合进行分析和优选。
  • 图  1  井眼造斜段钻杆管体受载情况示意图

    Figure  1.  Diagram of drill pipe body load in hole deviation section

    图  2  MTS809.25材料动态测试系统

    Figure  2.  Dynamic test system of MTS809.25 material

    图  3  单轴拉伸试验与仿真应力-应变曲线

    Figure  3.  The stress-strain curves of uniaxial tensile test and simulation

    图  4  试件疲劳试验与数值仿真对比关系曲线

    Figure  4.  The comparison curves between fatigue test data and numerical simulation data of a specimen

    图  5  失效钻杆管体形貌

    Figure  5.  The failed shape of drill pipe body

    图  6  钻杆管体网格模型

    Figure  6.  The mesh model of drill pipe body

    图  7  工作载荷下钻杆管体受力状态

    Figure  7.  Stress state of drill pipe body under working load

    图  8  工作载荷下管体应力沿着管体长度变化曲线

    Figure  8.  The Mises stress curve along the length of drill pipe body under working load

    图  9  管体初始裂纹萌生观测点

    Figure  9.  The observation points of initial crack initiation of drill pipe body

    图  10  预制裂纹过程

    Figure  10.  The pre-existing crack process

    图  11  裂纹前缘应力强度因子分布曲线

    Figure  11.  The distribution curves of stress intensity factor at crack tip

    图  12  不同初始裂纹位置的疲劳寿命与裂纹深度关系曲线

    Figure  12.  The relationship curves between fatigue life and crack depth at different initial crack locations

    图  13  不同应力比下的疲劳寿命与裂纹深度关系曲线

    Figure  13.  The relationship curves between fatigue life and crack depth under different stress ratios

    图  14  管体加厚端结构示意图

    Figure  14.  Diagram of the thickened end structure of the drill pipe body

    图  15  工作载荷下管体最大应力沿壁厚增量变化曲线

    Figure  15.  Change curves of the maximum Mises stress along incremental wall thickness under working load

    图  16  观测点AE点处管体疲劳寿命与壁厚增量的关系曲线

    Figure  16.  The relationship curves between fatigue life and incremental wall thickness at observation points A and E of drill pipe body

    图  17  工作载荷下, 管体最大应力随Meu伸长量变化曲线

    Figure  17.  The change curves of maximum Mises stress with Meu elongation under working load

    图  18  观测点AE点处管体疲劳寿命与Meu伸长量之间的关系曲线

    Figure  18.  The relationship curves between fatigue life and Meu elongation at observation points A and E of drill pipe body

    图  19  工作载荷下, 管体最大应力随Miu伸长量变化曲线

    Figure  19.  The change curves of the maximum Mises stress with Meu elongation of drill pipe body under working load

    图  20  观测点AE点处管体疲劳寿命与Meu伸长量之间的关系曲线

    Figure  20.  The relationship curves between fatigue life and Meu elongation at observation points A and E of drill pipe body

    表  1  钻杆管体元素质量分数

    Table  1.   Drill pipe body element mass fraction %

    C Si Mn P Cr Mo Ni Cu
    0.28 0.26 0.80 0.011 0.95 0.39 0.034 0.012
    下载: 导出CSV

    表  2  API S135钢级钻杆管体几何参数

    Table  2.   The geometrical parameters of API S135 steel drill pipe body

    类别 数值
    加厚类型 IEU
    外径 139.7 mm
    厚度 10.54 mm
    焊颈 144.5 mm
    钻杆长度 9.8 m
    下载: 导出CSV

    表  3  管体裂纹扩展材料常数

    Table  3.   Material constants of drill pipe body′s crack growth

    C M 门槛值Δ Kth/(MPa·mm1/2) 断裂韧度KC/(MPa·mm1/2)
    3.9×10-12 3.6 175 3 517
    下载: 导出CSV

    表  4  结构参数API标准初始值

    Table  4.   Initial values of structural parameters of API standard

    类别 API标准
    管体壁厚t/mm 10.54
    管体外加厚锥部长Meu/mm 63.5
    管体内加厚锥部长Miu/mm 76.2
    下载: 导出CSV

    表  5  增加壁厚, 观测点AE循环载荷次数统计表

    Table  5.   The statistics table of cycle load numbers of observation point A, E with incremental wall thickness

    壁厚t/mm E点循环次数/次 A点循环次数/次
    0 90 029 112 537
    1 127 568 151 483
    2 161 584 213 035
    3 224 028 213 035
    4 293 574 251 981
    5 331 113 290 927
    6 368 652 329 873
    7 406 191 368 819
    8 443 730 407 765
    9 481 269 446 711
    下载: 导出CSV

    表  6  增加Meu长度, 观测点AE载荷循环次数统计表

    Table  6.   The statistics table of cycle load numbers of observation points A, E with incremental length of Meu

    锥部长度伸长量/mm E点循环次数/次 A点循环次数/次
    0 90 029 112 537
    25 91 789 114 584
    50 95 337 118 135
    75 98 327 118 474
    100 101 149 119 011
    下载: 导出CSV

    表  7  管体疲劳寿命随Miu变化统计表

    Table  7.   The statistical table of fatigue life of drill pipe body with Miu change

    锥部长度伸长量/mm E点循环次数/次 A点循环次数/次
    0 90 029 112 537
    50 91 743 112 713
    100 92 389 113 135
    150 94 103 113 311
    200 95 817 113 487
    250 97 531 113 663
    下载: 导出CSV

    表  8  内加厚过渡消失区结构改进正交实验

    Table  8.   The orthogonal experiment on improving internal thickened transition vanishing zone structure

    序号 t/mm Meu/mm Miu/mm 应力集中系数
    1 3 75 150 1.225
    2 3 25 200 1.209
    3 3 50 50 1.195
    4 3 100 0 1.203
    5 4 100 100 1.194
    6 4 50 150 1.198
    7 3 0 100 1.209
    8 5 100 200 1.191
    9 4 0 200 1.182
    10 4 75 0 1.190
    11 5 75 100 1.194
    12 4 25 50 1.183
    13 6 75 200 1.190
    14 5 25 150 1.177
    15 6 100 50 1.168
    16 5 50 0 1.172
    17 6 50 100 1.178
    18 5 0 50 1.165
    19 7 100 150 1.177
    20 7 50 200 1.163
    21 6 0 150 1.167
    22 7 75 50 1.156
    23 6 25 0 1.160
    24 7 25 100 1.151
    25 7 0 0 1.163
    下载: 导出CSV
  • [1] 秦长毅, 蒋家华, 蒋存民, 等. 高性能钻杆研发及应用进展[J]. 石油管材与仪器, 2017, 3(1): 9-13. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYQ201701002.htm

    QIN C Y, JIANG J H, JIANG C M, et al. Research and application development of high-performance drill pipe[J]. Petroleum Tubular Goods & Instruments, 2017, 3(1): 9-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYYQ201701002.htm
    [2] 董亮亮. 抗弯钻杆接头螺纹及弯曲疲劳行为研究[D]. 成都: 西南石油大学, 2015

    DONG L L. High bending bearing drill pipe thread and fatigue behavior research[D]. Chengdu: Southwest Petroleum University, 2015. (in Chinese)
    [3] 韩勇, 冯耀荣, 李鹤林. G105钻杆管体刺穿原因分析[J]. 石油机械, 1990(1): 37-43. https://www.cnki.com.cn/Article/CJFDTOTAL-SYJI199001006.htm

    HAN Y, FENG Y R, LI H L. Causes of the through pricks on G105 drill pipes[J]. China Petroleum Machinery, 1990(1): 37-43. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYJI199001006.htm
    [4] 吴立新, 陈平, 祝效华, 等. 气体钻井钻柱疲劳失效周期分析[J]. 石油钻探技术, 2012, 40(1): 42-46. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201201010.htm

    WU L X, CHEN P, ZHU X H, et al. Contrast of fatigue failure cycles of drill string during gas drilling[J]. Petroleum Drilling Techniques, 2012, 40(1): 42-46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201201010.htm
    [5] 许杰, 林海, 霍宏博, 等. 渤海深井钻杆刺漏分析及疲劳寿命预测[J]. 钻采工艺, 2018, 41(6): 23-26. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCGY201806007.htm

    XU J, LIN H, HUO H B, et al. Washout analysis and fatigue life prediction for drill pipes used in Bohai deep wells[J] Drilling & Production Technology, 2018, 41(6): 23-26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZCGY201806007.htm
    [6] 郭王恒, 吴百川. 极限工况下钻杆接头疲劳分析[J]. 机械制造, 2020, 58(3): 41-45. https://www.cnki.com.cn/Article/CJFDTOTAL-JXZG202003016.htm

    GUO W H, WU B C. Fatigue analysis of drill pipe joint under extreme conditions[J]. Machinery, 2020, 58(3): 41-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXZG202003016.htm
    [7] 赵金兰, 李京川, 瞿婷婷, 等. 某S135钻杆管体断裂失效原因分析[J]. 焊管, 2018, 41(11): 48-54. https://www.cnki.com.cn/Article/CJFDTOTAL-HGZZ201811015.htm

    ZHAO J L, LI J C, QU T T, et al. Fracture failure analysis of a S135 drill pipe body[J]. Welded Pipe and Tube, 2018, 41(11): 48-54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HGZZ201811015.htm
    [8] 黄本生, 陈想, 陈勇彬, 等. 石油钻杆材料G105在不同条件下的疲劳断裂[J]. 材料工程, 2016, 44(2): 107-114. https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC201602018.htm

    HUANG B S, CHEN X, CHEN Y B, et al. Mechanism of fatigue fracture of G105 drill pipe material under different conditions[J]. Journal of Materials Engineering, 2016, 44(2): 107-114. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC201602018.htm
    [9] 郑洋, 万夫, 周咏琳, 等. CO2腐蚀下的钻杆应力与疲劳寿命实验研究[J]. 石油工业技术监督, 2016, 32(10): 48-52. https://www.cnki.com.cn/Article/CJFDTOTAL-SYJD201610016.htm

    ZHENG Y, WAN F, ZHOU Y L, et al. Experimental study on fatigue life of drill pipe under CO2 corrosion[J]. Technology Supervision in Petroleum Industry, 2016, 32(10): 48-52. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYJD201610016.htm
    [10] 舒志强, 欧阳志英, 袁鹏斌. 拉扭复合载荷条件下V150钻杆的力学性能研究[J]. 石油钻探技术, 2019, 47(2): 68-73. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201902011.htm

    SHU Z Q, OUYANG Z Y, YUAN P B. The mechanical performance of V150 drill pipe under combined tension-torsion loading[J]. Petroleum Drilling Techniques, 2019, 47(2): 68-73. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201902011.htm
    [11] 张智. 复杂结构井钻杆接头三维力学特性及结构改进研究[D]. 成都: 西南石油大学, 2016.
    [12] 于良健. 油气井用钻杆疲劳寿命研究[D]. 阜新: 辽宁工程技术大学, 2019.

    YU L J. Study on fatigue life of drill pipe for oil and gas wells[D]. Fuxin: Liaoning Technical University, 2019. (in Chinese)
    [13] 曹银萍, 索红娟, 窦益华, 等. RTTS封隔器卡瓦咬伤套管裂纹塑性扩展分析[J]. 塑性工程学报, 2019, 26(4): 287-292. https://www.cnki.com.cn/Article/CJFDTOTAL-SXGC201904045.htm

    CAO Y P, SUO H J, DOU Y H, et al. Analysis of plastic extension of cracks in casing from RTTS packer slips[J]. Journal of Plasticity Engineering, 2019, 26(4): 287-292. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SXGC201904045.htm
    [14] 周浩, 管锋, 刘少胡, 等. 连续管疲劳寿命模型建立及疲劳寿命预测[J]. 塑性工程学报, 2019, 26(5): 283-289. https://www.cnki.com.cn/Article/CJFDTOTAL-SXGC202301014.htm

    ZHOU H, GUAN F, LIU S H, et al. Establishment of fatigue life model and prediction of fatigue life for coiled tubing[J]. Journal of Plasticity Engineering, 2019, 26(5): 283-289. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SXGC202301014.htm
    [15] 张智, 祝效华. 钻杆接头多轴疲劳寿命[J]. 石油学报, 2019, 40(7): 839-845. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201907009.htm

    ZHANG Z, ZHU X H. Multiaxial fatigue life of drill pipe joint[J]. Acta Petrolei Sinica, 2019, 40(7): 839-845. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201907009.htm
    [16] 林元华, 李光辉, 胡强, 等. 钻杆应力-疲劳寿命曲线试验研究[J]. 石油钻探技术, 2015, 43(4): 124-128. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201504025.htm

    LIN Y H, LI G H, HU Q, et al. Experimental study on drill pipe stress-fatigue life curve[J]. Petroleum Drilling Techniques, 2015, 43(4): 124-128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201504025.htm
    [17] PARIS P, ERDOGAN F. A critical analysis of crack propagation laws[J]. Journal of Basic Engineering, 1963, 85(4): 528-533.
    [18] 张亚军, 张欣耀, 张云浩. 金属材料疲劳裂纹扩展速率不同模型应用分析[J]. 材料开发与应用, 2021, 36(2): 88-92. https://www.cnki.com.cn/Article/CJFDTOTAL-CLKY202102017.htm

    ZHANG Y J, ZHANG X Y, ZHANG Y H. Analysis on application of different models for fatigue crack propagation rate of metallic materials[J]. Development and Application of Materials, 2021, 36(2): 88-92. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLKY202102017.htm
    [19] 张云超, 王友仁, 李加兴. 基于ABAQUS的圆柱直齿轮齿根裂纹扩展与寿命估计[J]. 机械制造与自动化, 2021, 50(1): 54-56. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZHD202101014.htm

    ZHANG Y C, WANG Y R, LI J X. Root crack propagation and life estimation of spur gear based on ABAQUS[J]. Machine Building & Automation, 2021, 50(1): 54-56. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZZHD202101014.htm
    [20] SAJITH S, MURTHY K S R K, ROBI P S. Fatigue life prediction under mixed-mode loading using equivalent stress intensity factor models[J]. MATEC Web of Conferences, 2018, 172: 03005.
    [21] ERDOGAN F, SIH G C. On the crack extension in plates under plane loading and transverse shear[J]. Journal of Basic Engineering, 1963, 85(4): 519-525.
    [22] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 228.1-2010金属材料拉伸试验第1部分: 室温试验方法[S]. 北京: 中国标准出版社中人共中准会2011.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. GB/T 228.1-2010 Metallic materials-Tensile testing-Part 1: Method of test at room temperature[S]. Beijing: China Standard Press, 2010. (in Chinese)
    [23] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 6398-2017金属材料疲劳试验疲劳裂纹扩展方法[S]. 北京: 中国标准出版社中人共中准会2017.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. GB/T 6398-2017 Metallic materials-Fatigue testing-Fatigue crack growth method[S]. Beijing: China Standard Press, 2017. (in Chinese)
    [24] 林铁军, 练章华, 曾晓健, 等. 应用XFEM模拟研究钻杆裂纹扩展过程[J]. 重庆大学学报, 2010, 33(7): 123-128. https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE201007023.htm

    LIN T J, LIAN Z H, ZENG X J. Simulation on crack growth of drill pipe with XFEM[J]. Journal of Chongqing University, 2010, 33(7): 123-128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE201007023.htm
  • 加载中
图(20) / 表(8)
计量
  • 文章访问数:  82
  • HTML全文浏览量:  25
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-18
  • 刊出日期:  2023-10-25

目录

    /

    返回文章
    返回