留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轨道车辆制动防滑控制系统数值建模与验证

朱文健 余朝刚 朱文良

朱文健, 余朝刚, 朱文良. 轨道车辆制动防滑控制系统数值建模与验证[J]. 机械科学与技术, 2023, 42(10): 1727-1734. doi: 10.13433/j.cnki.1003-8728.20220126
引用本文: 朱文健, 余朝刚, 朱文良. 轨道车辆制动防滑控制系统数值建模与验证[J]. 机械科学与技术, 2023, 42(10): 1727-1734. doi: 10.13433/j.cnki.1003-8728.20220126
ZHU Wenjian, YU Chaogang, ZHU Wenliang. Numerical Modeling and Verification of Rolling Stock Braking Anti-skid Control System[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(10): 1727-1734. doi: 10.13433/j.cnki.1003-8728.20220126
Citation: ZHU Wenjian, YU Chaogang, ZHU Wenliang. Numerical Modeling and Verification of Rolling Stock Braking Anti-skid Control System[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(10): 1727-1734. doi: 10.13433/j.cnki.1003-8728.20220126

轨道车辆制动防滑控制系统数值建模与验证

doi: 10.13433/j.cnki.1003-8728.20220126
基金项目: 

国家自然科学基金项目 52072266

国家自然科学基金项目 U1534205

详细信息
    作者简介:

    朱文健(1996-), 硕士研究生, 研究方向为列车制动防滑控制, 2260857526@qq.com

    通讯作者:

    朱文良, 讲师, 硕士生导师, 10080008@sues.edu.cn

  • 中图分类号: U270.35

Numerical Modeling and Verification of Rolling Stock Braking Anti-skid Control System

  • 摘要: 基于轨道车辆制动系统三位式防滑阀工作原理,建立防滑阀数学模型,进行充排气特性仿真分析;依次建立电空转换阀、紧急阀及中继阀等阀类数学模型,构建空气制动单元模型;针对制动防滑控制系统,建立防滑控制单元及制动动力学单元模型,结合空气制动单元模型搭建四轴车辆制动防滑控制数值仿真平台;利用数值仿真平台进行列车制动防滑性能仿真分析,并通过制动距离、车速及滑动量误差量3个指标与实车在线试验数据对比。结果表明:制动距离仿真值与试验值误差小于5%;车速仿真曲线和试验曲线吻合较好,二者任意时刻的差值小于3 km/h;各个滑动间隔内的滑动量误差平均值小于20%;三者均满足指标要求,验证了所建四轴车辆制动防滑控制模型的有效性。
  • 图  1  防滑阀结构示意图

    Figure  1.  Diagram of anti-skid valve structure

    图  2  防滑阀数值模型耦合图

    Figure  2.  Diagram of numerical model coupling of anti-skid valve

    图  3  防滑阀Simulink仿真模型

    Figure  3.  Simulink simulation model of anti-skid valve

    图  4  充排气性能测试结果

    Figure  4.  Test results on charging and exhaust performance

    图  5  四轴车辆制动防滑控制数值仿真平台

    Figure  5.  Numerical simulation platform for four-axle vehicle braking and anti-skid control

    图  6  四轴车辆制动防滑控制数值仿真模型

    Figure  6.  Numerical simulation model of four-axle vehicle braking and anti-skid control

    图  7  列车速度仿真值、试验值及其差值曲线

    Figure  7.  Train speed simulation value and test value and their difference curves

    图  8  各轴轴速仿真值与试验值对比

    Figure  8.  Comparison between the simulation value and the test value of each axle speed

    表  1  仿真模型部分参数

    Table  1.   Some parameters of the simulation model

    仿真参数 数值
    进气口输入压力pi/kPa 500
    工作电压U/V 24
    线圈匝数N 200
    励磁线圈阻值R 20
    磁路工作气隙最大长度δl/m 0.000 1
    工作气隙横截面直径D/m 0.007
    动铁芯质量m/kg 0.005
    动铁芯所受气压作用直径di/m 0.004
    运动阻尼系数Ci/(N·s·m-1) 0.2
    膜片质量m/kg 0.008
    膜片最大位移ximax/m 0.001
    进气膜片左侧受力直径dHl/m 0.022
    排气膜片左侧受力直径dRl/m 0.04
    下载: 导出CSV

    表  2  制动性能参数的仿真值与试验值对比

    Table  2.   Comparison of simulation values and test values of braking performance parameters

    参数 仿真 试验 误差
    制动距离 713.42 m 712.09 m 0.19%
    制动时间 44.82 s 44.72 s 0.22%
    平均减速度 0.541 m/s2 0.542 m/s2 0.18%
    下载: 导出CSV

    表  3  不同滑动间隔下的仿真与试验滑动量总和误差结果

    Table  3.   Error results of the sum of simulation and test sliding momentum at different sliding intervals

    滑动间隔 车轴 ASsim/% ASreal/% erroraxle-n/% E/%
    0≤S<5% 1 48.84 37.36 30.72 19.19
    2 46.12 56.04 17.70
    3 45.86 53.85 14.83
    4 46.15 53.35 13.50
    5%≤S<10% 1 42.98 42.76 0.52 18.96
    2 43.53 33.07 31.63
    3 43.71 35.26 23.94
    4 43.78 36.56 19.74
    10%≤S<20% 1 7.55 19.38 61.02 17.82
    2 9.64 9.99 3.48
    3 9.20 9.79 5.99
    4 9.06 8.99 0.79
    20%≤S<30% 1 0.63 0.50 25.70 16.73
    2 0.71 0.90 21.47
    3 1.23 1.10 11.52
    4 1.01 1.10 8.22
    30%≤S 1 0.00 0.00 - -
    2 0.00 0.00 -
    3 0.00 0.00 -
    4 0.00 0.00 -
    下载: 导出CSV
  • [1] 韦皓. 动车组超低黏着轨面制动防滑性能试验研究[J]. 铁道学报, 2017, 39(9): 67-73. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201709010.htm

    WEI H. EMU anti-slide performance experimental study on ultra-low adhesion rail surface[J]. Journal of the China Railway Society, 2017, 39(9): 67-73. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201709010.htm
    [2] 马天和, 吴萌岭, 田春. 基于黏着力观测器的列车空气制动防滑控制[J]. 同济大学学报(自然科学版), 2020, 48(11): 1668-1675. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202011016.htm

    MA T H, WU M L, TIAN C. Anti-skid control based on adhesion force observer for train pneumatic braking[J]. Journal of Tongji University (Natural Science), 2020, 48(11): 1668-1675. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202011016.htm
    [3] 李邦国, 范荣巍, 杨伟君, 等. 高速动车组制动防滑阀建模及仿真分析[J]. 铁道机车车辆, 2011, 31(5): 128-131. doi: 10.3969/j.issn.1008-7842.2011.05.032

    LI B G, FAN R W, YANG W J, et al. Modeling and simulation analysis of anti-skid valve[J]. Railway Locomotive & Car, 2011, 31(5): 128-131. (in Chinese) doi: 10.3969/j.issn.1008-7842.2011.05.032
    [4] 胡晓峰, 闫富菊, 郭斌, 等. 高速机车防滑阀动特性仿真及测试方法研究[J]. 仪器仪表学报, 2019, 40(11): 250-259. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201911030.htm

    HU X F, YAN F J, GUO B, et al. Dynamic characteristics simulation and test method for the high speed locomotive anti-skid valve[J]. Chinese Journal of Scientific Instrument, 2019, 40(11): 250-259. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201911030.htm
    [5] LUO Z J, WU M L, ZUO J Y, et al. Modelling and model validation of an electropneumatic brake on subway trains[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2016, 230(2): 374-391. doi: 10.1177/0954409714542860
    [6] ZHU W L, DIAO F, WU M L. Modeling and anti-skid control of the rail vehicle braking system[C]//Proceedings of the 6th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2016). Atlantis Press, 2016: 582-590.
    [7] TURABIMANA P, SOSTHENE K, MUSABYIMANA J. Modeling and simulation of anti-skid control system of railway vehicle in curved track[J]. European Mechanical Science, 2020, 4(4): 158-165. doi: 10.26701/ems.703079
    [8] 刁锋, 朱文良, 秦凌光, 等. 基于有限状态机的轨道交通车辆防滑控制建模仿真与验证[J]. 城市轨道交通研究, 2019, 22(1): 55-59. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201901015.htm

    DIAO F, ZHU W L, QIN L G, et al. Modeling simulation and verification of railway vehicle anti-sliding control based on finite state machine[J]. Urban Mass Transit, 2019, 22(1): 55-59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201901015.htm
    [9] ZHU X Y, WU M L, TIAN C, et al. Simulation research of anti-sliding control of urban rail brake system based on AMESim and Simulink[J]. Applied Mechanics and Materials, 2014, 666: 175-178.
    [10] TB/T 3009-2019, 机车车辆制动系统用防滑装置[S]. 北京: 中国铁道出版社, 2019.

    TB/T 3009-2019, Anti-skid device of brake system for rolling stock[S]. Beijing: China Railway Press, 2019. (in Chinese)
    [11] BS EN 15595-2011, Railway applications braking wheel slide protection[S]. London: CEN Management Centre, 2011.
    [12] Taghizadeh M, Ghaffari A, Najafi F. Modeling and identification of a solenoid valve for PWM control applications[J]. Comptes rendus-Mécanique, 2009, 337(3): 131-140.
    [13] Bu F P, Tan H S. Pneumatic brake control for precision stopping of heavy-duty vehicles[J]. IEEE Transactions on Control Systems Technology, 2006, 15(1): 53-64.
    [14] 朱文良, 吴萌岭, 田春, 等. 基于多学科协同分析的轨道车辆制动系统集成化仿真平台[J]. 交通运输工程学报, 2017, 17(3): 99-110. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201703011.htm

    Zhu W L, Wu M L, Tian C, et al. Integrated simulation platform analysis for braking system of rolling stock based on multi-discipline collaborative analysis[J]. Journal of Traffic and Transportation Engineering, 2017, 17(3): 99-110. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201703011.htm
    [15] Zhu W L, Zhu W J, Zheng S B, et al. An improved degraded adhesion model for wheel-rail under braking conditions[J]. Industrial Lubrication and Tribology, 2021, 73(3): 450-456.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  43
  • HTML全文浏览量:  59
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-02
  • 刊出日期:  2023-10-25

目录

    /

    返回文章
    返回