留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

FDM五轴3D打印支撑消减算法研究

王铮 赵东标

王铮, 赵东标. FDM五轴3D打印支撑消减算法研究[J]. 机械科学与技术, 2023, 42(10): 1673-1677. doi: 10.13433/j.cnki.1003-8728.20220123
引用本文: 王铮, 赵东标. FDM五轴3D打印支撑消减算法研究[J]. 机械科学与技术, 2023, 42(10): 1673-1677. doi: 10.13433/j.cnki.1003-8728.20220123
WANG Zheng, ZHAO Dongbiao. Study on Elimination-reduction Algorithm of Support in Five-axis 3D Printing[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(10): 1673-1677. doi: 10.13433/j.cnki.1003-8728.20220123
Citation: WANG Zheng, ZHAO Dongbiao. Study on Elimination-reduction Algorithm of Support in Five-axis 3D Printing[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(10): 1673-1677. doi: 10.13433/j.cnki.1003-8728.20220123

FDM五轴3D打印支撑消减算法研究

doi: 10.13433/j.cnki.1003-8728.20220123
详细信息
    作者简介:

    王铮(1997-), 硕士研究生, 研究方向为五轴3D打印, 机电控制及自动化, jxdzwz@nuaa.edu.cn

    通讯作者:

    赵东标, 教授, 博士生导师, zdbme@nuaa.edu.cn

  • 中图分类号: TP391

Study on Elimination-reduction Algorithm of Support in Five-axis 3D Printing

  • 摘要: 利用传统3D打印技术制造复杂模型时辅助支撑结构的生成与去除需要浪费大量时间与材料,为了解决这个问题,提出了一种基于模型分解的五轴3D打印算法,使得空间模型能够实现辅助支撑消减的打印制造。该算法先利用"层切法"对一个空间模型进行分解,并在分解过程中维护一个各个节点与各个分解子模型相对应的多叉分解树。然后再依据多叉分解树的结构与相应树节点的信息,规划出五轴3D打印设备的模型打印路径。在自研五轴增材制造系统的帮助下,该算法能进行一般模型的分解与辅助支撑消减的模型打印。
  • 图  1  五轴3D打印流程简介

    Figure  1.  Flow chart of five-axis 3D printing

    图  2  假定输入模型: 斯坦福兔子Bunny

    Figure  2.  Expected input model: Stanford rabbit

    图  3  需支撑打印的集合区域MS

    Figure  3.  Set regions MS needing support structure

    图  4  轮廓判别示意图

    Figure  4.  Diagram of contour discrimination

    图  5  分割区域判别模型示意图

    Figure  5.  Diagram of segmentation region discrimination model

    图  6  分割区域判别实现过程

    Figure  6.  Algorithms of discrimination of segmentation regions

    图  7  边界线与分割平面示意图

    Figure  7.  Diagram of edge line and segmentation plane

    图  8  模型分割

    Figure  8.  Model segmentation

    图  9  模型分割实现过程

    Figure  9.  Algorithms of model segmentation

    图  10  存储分解结构的树

    Figure  10.  Trees for storing decomposition structures

    图  11  两种不同遍历方式确定的模型分解子块打印顺序

    Figure  11.  Printing order of sub-models determined by two kinds of different traversal patterns

    图  12  情况1)干涉情况示意图

    Figure  12.  Diagram of situation 1) interference

    图  13  情况2)干涉情况示意图

    Figure  13.  Diagram of situation 2) interference

    图  14  打印结构比对

    Figure  14.  Comparison of printing structures

    图  15  成品比对

    Figure  15.  Comparison of printed models

    图  16  模型b)打印过程

    Figure  16.  Model b printing process

    表  1  三轴与五轴模型打印消耗对比

    Table  1.   Comparison of consumption between three axis model printing and five axis model printing

    模型 三轴打印时间/min 五轴打印时间/min 打印时间减少率/% 材料消耗减少率/%
    a) 134 93 30.6 48.72
    b) 103 75 27.2 29.17
    c) 279 165 40.9 26.88
    d) 277 194 30.0 13.51
    下载: 导出CSV
  • [1] ZHOU M Y, XI J T, YAN J Q. Adaptive direct slicing with non-uniform cusp heights for rapid prototyping[J]. The International Journal of Advanced Manufacturing Technology, 2004, 23(1): 20-27.
    [2] 孙登广, 戴宁, 黄仁凯, 等. 轻量化蜂窝3D打印路径自适应生成技术[J]. 计算机集成制造系统, 2018, 24(8): 1902-1909. doi: 10.13196/j.cims.2018.08.002

    SUN D G, DAI N, HUANG R K, et al. Adaptive path generation for 3D printing of light-weight cellular[J]. Computer Integrated Manufacturing Systems, 2018, 24(8): 1902-1909. (in Chinese) doi: 10.13196/j.cims.2018.08.002
    [3] 宋国华, 敬石开, 许文婷, 等. 面向熔融沉积成型的树状支撑结构生成设计方法[J]. 计算机集成制造系统, 2016, 22(3): 583-588. doi: 10.13196/j.cims.2016.03.001

    SONG G H, JING S K, XU W T, et al. Tree-inspired generative design method of support structures for FDM[J]. Computer Integrated Manufacturing Systems, 2016, 22(3): 583-588. (in Chinese) doi: 10.13196/j.cims.2016.03.001
    [4] XU K, CHEN L F, TANG K. Support-free layered process planning toward 3+2-axis additive manufacturing[J]. IEEE Transactions on Automation Science and Engineering, 2019, 16(2): 838-850. doi: 10.1109/TASE.2018.2867230
    [5] SHEN H Y, DIAO H D, YUE S H, et al. Fused deposition modeling five-axis additive manufacturing: machine design, fundamental printing methods and critical process characteristics[J]. Rapid Prototyping Journal, 2018, 24(3): 548-561. doi: 10.1108/RPJ-05-2017-0096
    [6] CHEN L, LAU T Y, TANG K. Manufacturability analysis and process planning for additive and subtractive hybrid manufacturing of Quasi-rotational parts with columnar features[J]. Computer-Aided Design, 2020, 118: 102759. doi: 10.1016/j.cad.2019.102759
    [7] KAPIL S, JOSHI P, KULKARNI P M, et al. Elimination of support mechanism in additive manufacturing through substrate tilting[J]. Rapid Prototyping Journal, 2018, 24(7): 1155-1165. doi: 10.1108/RPJ-07-2017-0139
    [8] CHEN L F, CHUNG M F, TIAN Y B, et al. Variable-depth curved layer fused deposition modeling of thin-shells[J]. Robotics and Computer-Integrated Manufacturing, 2019, 57: 422-434. doi: 10.1016/j.rcim.2018.12.016
    [9] CHEN L F, LI Y G, TANG K. Variable-depth multi-pass tool path generation on mesh surfaces[J]. The International Journal of Advanced Manufacturing Technology, 2018, 95(5-8): 2169-2183. doi: 10.1007/s00170-017-1367-x
    [10] ISA M A, LAZOGLU I. Five-axis additive manufacturing of freeform models through buildup of transition layers[J]. Journal of Manufacturing Systems, 2019, 50: 69-80. doi: 10.1016/j.jmsy.2018.12.002
    [11] HU Q X, FENG D, ZHANG H G, et al. Oriented to multi-branched structure unsupported 3D printing method research[J]. Materials, 2020, 13(9): 2023. doi: 10.3390/ma13092023
    [12] ZHAO G, MA G C, XIAO W L, et al. Feature-based five-axis path planning method for robotic additive manufacturing[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2019, 233(5): 1412-1424. doi: 10.1177/0954405417752508
    [13] WU C M, DAI C K, FANG G X, et al. RoboFDM: A robotic system for support-free fabrication using FDM[C]//2017 IEEE International Conference on Robotics and Automation. Singapore: IEEE, 2017: 1175-1180.
    [14] WEI X Z, QIU S Q, ZHU L, et al. Toward support-free 3D printing: a skeletal approach for partitioning models[J]. IEEE Transactions on Visualization and Computer Graphics, 2018, 24(10): 2799-2812.
    [15] XIAO X Y, JOSHI S. Process planning for five-axis support free additive manufacturing[J]. Additive Manufacturing, 2020, 36: 101569.
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  62
  • HTML全文浏览量:  38
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-22
  • 刊出日期:  2023-10-25

目录

    /

    返回文章
    返回