留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

负气门重叠对掺氢天然气HCCI发动机燃烧特性的影响研究

李岳林 杨得志 张子涵 张五龙

李岳林, 杨得志, 张子涵, 张五龙. 负气门重叠对掺氢天然气HCCI发动机燃烧特性的影响研究[J]. 机械科学与技术, 2023, 42(10): 1648-1656. doi: 10.13433/j.cnki.1003-8728.20220120
引用本文: 李岳林, 杨得志, 张子涵, 张五龙. 负气门重叠对掺氢天然气HCCI发动机燃烧特性的影响研究[J]. 机械科学与技术, 2023, 42(10): 1648-1656. doi: 10.13433/j.cnki.1003-8728.20220120
LI Yuelin, YANG Dezhi, ZHANG ZiHan, ZHANG Wulong. Study on Effect of Negative Valve Overlap on Combustion Characteristics of Hydrogen-doped Natural Gas HCCI Engine[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(10): 1648-1656. doi: 10.13433/j.cnki.1003-8728.20220120
Citation: LI Yuelin, YANG Dezhi, ZHANG ZiHan, ZHANG Wulong. Study on Effect of Negative Valve Overlap on Combustion Characteristics of Hydrogen-doped Natural Gas HCCI Engine[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(10): 1648-1656. doi: 10.13433/j.cnki.1003-8728.20220120

负气门重叠对掺氢天然气HCCI发动机燃烧特性的影响研究

doi: 10.13433/j.cnki.1003-8728.20220120
基金项目: 

国家自然科学基金项目 51176014

详细信息
    作者简介:

    李岳林(1963-), 教授, 博士生导师, 研究方向为汽车节能减排与新能源技术, li.yuelin@163.com

  • 中图分类号: TK437

Study on Effect of Negative Valve Overlap on Combustion Characteristics of Hydrogen-doped Natural Gas HCCI Engine

  • 摘要: 为提高掺氢天然气均质压燃(HCCI)发动机性能, 降低NOx排放, 运用GT-power和Chemkin软件搭建发动机仿真模型, 在不同负气门重叠(NVO)方案下, 对发动机缸内燃烧以及NOx的排放进行了仿真分析。结果表明: NVO策略可以降低掺氢天然气HCCI发动机缸内温度和压力峰值, 改善自燃着火特性, 缓解噪声和爆震。3种方案中, 单独改变进气门开启(IVO)时刻的NVO策略对发动机动力损失影响最小, 同时改变IVO和EVC时刻的对称NVO策略, 能最大程度的实现废气缸内稀释作用与加热效果, 使缸内燃烧放热速率的缓和作用以及压力升高率的降低效果最优化, 最大限度的降低NOx排放。
  • 图  1  HCNG发动机仿真模型

    Figure  1.  Simulation model of hydrogen natural gas engine

    图  2  缸内压力验证对比曲线

    Figure  2.  Comparison curve of in-cylinder pressure verification

    图  3  缸内温度验证对比曲线

    Figure  3.  Comparison curve of in-cylinder temperature verification

    图  4  排气门早关对缸内EGR率的影响

    Figure  4.  Effect of early exhaust valve closure on in-cylinder EGR rate

    图  5  排气门早关对缸内充气效率的影响

    Figure  5.  Effect of early exhaust valve closure on cylinder filling efficiency

    图  6  排气门早关时刻对缸内压力的影响

    Figure  6.  Effect of exhaust valve early closing moment on in-cylinder pressure

    图  7  排气门早关时刻对缸内温度的影响

    Figure  7.  Effect of exhaust valve early closing moment on cylinder temperature

    图  8  排气门早关时刻对缸内压力升高率的影响

    Figure  8.  Effect of exhaust valve early closing moment on the rate of pressure rise in the cylinder

    图  9  排气门早关时刻对缸内放热率的影响

    Figure  9.  Effect of exhaust valve early closing moment on cylinder heat release rate

    图  10  排气门关闭时刻对NOx排放的影响

    Figure  10.  Effect of exhaust valve closing moment on NOx emission

    图  11  进气门晚开对缸内EGR率的影响

    Figure  11.  Effect of late opening of intake valve on in-cylinder EGR rate

    图  12  进气门晚开对缸内充气效率的影响

    Figure  12.  Effect of late opening of intake valve on cylinder filling efficiency

    图  13  进气门开启时刻对缸内压力的影响

    Figure  13.  Effect of intake valve opening moment on in-cylinder pressure

    图  14  进气门开启时刻对缸内温度的影响

    Figure  14.  Effect of intake valve opening moment on in-cylinder temperature

    图  15  进气门开启时刻对缸内压力升高率的影响

    Figure  15.  Effect of intake valve opening moment on in-cylinder pressure rise rate

    图  16  进气门开启时刻对缸内放热率的影响

    Figure  16.  Effect of intake valve opening moment on in-cylinder heat release rate

    图  17  进气门开启时刻对NOx排放的影响

    Figure  17.  Effect of intake valve opening moment on NOx emission

    图  18  对称NVO对缸内EGR率的影响

    Figure  18.  Effect of symmetric NVO on in-cylinder EGR rate

    图  19  对称NVO对缸内充量系数的影响

    Figure  19.  Effect of symmetric NVO on cylinder charge factor

    图  20  对称NVO对缸内压力的影响

    Figure  20.  Effect of symmetric NVO on cylinder pressure

    图  21  对称NVO对缸内温度的影响

    Figure  21.  Effect of symmetric NVO on in-cylinder temperature

    图  22  对称NVO对缸内压力升高率的影响

    Figure  22.  Effect of symmetric NVO on pressure rise rate in the cylinder

    图  23  对称NVO对缸内放热率的影响

    Figure  23.  Effect of symmetric NVO on the exothermic rate in the cylinder

    图  24  对称NVO对NOx排放的影响

    Figure  24.  Effect of symmetric NVO on NOx emissions

    表  1  试验发动机主要参数

    Table  1.   Main parameters of a test engine

    项目 数值
    排量 0.815 L
    缸径×行程 95 mm×115 mm
    压缩比 17∶1
    连杆长度×曲柄半径 210 mm×57.5 mm
    标定功率/转速 10.6 kW/2 200 r/min
    标定燃油消耗率 ≤244.8g/kW·h
    最大扭矩/转矩 50.2 Nm/1 760 r/min
    排气门开启正时 43 ℃A BBDC
    进气门开启正时 15 ℃A BTDC
    排气门关闭正时 15 ℃A ATDC
    进气门关闭正时 33 ℃A ABDC
    下载: 导出CSV
  • [1] LUO S J, MA F H, MEHRA R K, et al. Deep insights of HCNG engine research in China[J]. Fuel, 2020, 263: 116612. doi: 10.1016/j.fuel.2019.116612
    [2] HAO D, MEHRA K R, LUO S J, et al. Experimental study of hydrogen enriched compressed natural gas (HCNG) engine and application of support vector machine (SVM) on prediction of engine performance at specific condition[J]. International Journal of Hydrogen Energy, 2020, 45(8): 5309-5325. doi: 10.1016/j.ijhydene.2019.04.039
    [3] 黄彬, 胡二江, 黄佐华, 等. 火花点火天然气掺氢发动机结合EGR时的循环变动规律[J]. 内燃机学报, 2011, 29(1): 16-22. https://www.cnki.com.cn/Article/CJFDTOTAL-NRJX201101004.htm

    HUANG B, HU E J, HUANG Z H, et al. Cycle-by-cycle variations of a spark ignition engine fueled with natural gas-hydrogen blends combined with EGR[J]. Transactions of CSICE, 2011, 29(1): 16-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NRJX201101004.htm
    [4] RAO A, GAO H Y, MA F H. Study of laminar burning speed and calibration coefficients of quasi-dimensional combustion model for hydrogen enriched compressed natural gas fueled internal combustion engine along with exhaust gas recirculation[J]. Fuel, 2021, 283: 119284. doi: 10.1016/j.fuel.2020.119284
    [5] LIANG X, ZHANG J Y, LI Z Z, et al. Effects of fuel combination and IVO timing on combustion and emissions of a dual-fuel HCCI combustion engine[J]. Frontiers in Energy, 2020, 14(4): 778-789. doi: 10.1007/s11708-020-0698-8
    [6] 桂勇, 邓康耀, 石磊. 负阀重叠早喷模式HCCI燃烧数学模型与计算分析[J]. 内燃机工程, 2012, 33(4): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-NRJG201204002.htm

    GUI Y, DENG K Y, SHI L. Mathematical model and computational analysis of HCCI combustion based on NVO early injection mode[J]. Chinese Internal Combustion Engine Engineering, 2012, 33(4): 1-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NRJG201204002.htm
    [7] DUAN X B, LAI M C, JANSONS M, et al. A review of controlling strategies of the ignition timing and combustion phase in homogeneous charge compression ignition (HCCI) engine[J]. Fuel, 2021, 285: 119142. doi: 10.1016/j.fuel.2020.119142
    [8] 张志永, 董光宇, 邓俊, 等. 内部EGR对HCCI燃烧及自由离子生成影响的数值研究[J]. 汽车工程, 2009, 31(10): 905-910. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC200910003.htm

    ZHANG Z Y, DONG G Y, DENG J, et al. A numerical study on the effects of internal EGR on HCCI combustion and free ion formation[J]. Automotive Engineering, 2009, 31(10): 905-910. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC200910003.htm
    [9] 李云虹, 杜家坤, 秦博, 等. 压缩比及EGR对直喷米勒循环汽油机性能影响的试验研究[J]. 车用发动机, 2020(6): 19-23. https://www.cnki.com.cn/Article/CJFDTOTAL-CYFD202006004.htm

    LI Y H, DU J K, QIN B, et al. Influences of compression ratio and EGR on DI miller gasoline engine performance[J]. Vehicle Engine, 2020(6): 19-23. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CYFD202006004.htm
    [10] BELKEBIR S M, KHELIDJ B, ABBES M T. Effects of EGR and alternative fuels on homogeneous charge compression ignition (HCCI) combustion mode[J]. International Journal of Design & Nature and Ecodynamics, 2021, 16(2): 135-144.
    [11] 桂勇, 孙佑成, 徐敏, 等. 内部EGR及增压拓展柴油HCCI燃烧负荷范围试验研究[J]. 车用发动机, 2012, 4(2): 35-40. (未找到请确认) https://www.cnki.com.cn/Article/CJFDTOTAL-CYFD201202009.htm

    GUI Y, SUN Y C, XU M, et al. Experimental investigation on extending load range of diesel HCCI engine by internal EGR and boost[J]. Vehicle Engine, 2012, 4(2): 35-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CYFD201202009.htm
    [12] 乔瑜, 徐明厚, 姚洪. 基于敏感性分析的甲烷反应机理优化简化[J]. 华中科技大学学报(自然科学版), 2007, 35(5): 85-87. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG200705024.htm
    [13] 解茂昭, 贾明. 内燃机计算燃烧学[M]. 3版. 北京: 科学出版社, 2016.

    XIE Maozhao, JIA Ming. Computational combustion science of internal combustion engines[M]. 3rd edition, Beijing: Science Press, 2016.
    [14] RA Y, REITZ R D. A reduced chemical kinetic model for IC engine combustion simulations with primary reference fuels[J]. Combustion and Flame, 2008, 155(4): 713-738.
    [15] TURNS S R. 燃烧学导论: 概念与应用[M]. 3版. 姚强, 李水清, 王宇, 译. 北京: 清华大学出版社, 2015.

    TURNS S R. An introduction to combustion: concepts and applications[M]. 3rd ed. YAO Q, LI S Q, WANG Y, trans. Beijing: Tsinghua University Press, 2015. (in Chinese)
    [16] WOSCHNI G. A "niversally applicable equation for the instantaneous heat transfer coefficient in the internal combustion engine[R]. "AE, 1967.
    [17] 李岳林, 沈嘉诚. 掺氢天然气HCCI发动机燃烧特性数值模拟研究[J]. 汽车工程学报, 2019, 9(3): 182-192. https://www.cnki.com.cn/Article/CJFDTOTAL-QCYK201903004.htm

    LI Y L, SHEN J C. Numerical simulation of combustion characteristics for a HCCI engine fueled with natural gas and hydrogen[J]. Chinese Journal of Automotive Engineering, 2019, 9(3): 182-192. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCYK201903004.htm
  • 加载中
图(24) / 表(1)
计量
  • 文章访问数:  55
  • HTML全文浏览量:  35
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-30
  • 刊出日期:  2023-10-25

目录

    /

    返回文章
    返回