留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

湿式摩擦离合器摩擦副热特性分析

苏楠阳 吴学深 杨星光 鲍和云

苏楠阳,吴学深,杨星光, 等. 湿式摩擦离合器摩擦副热特性分析[J]. 机械科学与技术,2023,42(9):1567-1573 doi: 10.13433/j.cnki.1003-8728.20220116
引用本文: 苏楠阳,吴学深,杨星光, 等. 湿式摩擦离合器摩擦副热特性分析[J]. 机械科学与技术,2023,42(9):1567-1573 doi: 10.13433/j.cnki.1003-8728.20220116
SU Nanyang, WU Xueshen, YANG Xingguang, BAO Heyun. Analysis of Thermal Characteristics of Friction Pair in Wet Friction Clutch[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(9): 1567-1573. doi: 10.13433/j.cnki.1003-8728.20220116
Citation: SU Nanyang, WU Xueshen, YANG Xingguang, BAO Heyun. Analysis of Thermal Characteristics of Friction Pair in Wet Friction Clutch[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(9): 1567-1573. doi: 10.13433/j.cnki.1003-8728.20220116

湿式摩擦离合器摩擦副热特性分析

doi: 10.13433/j.cnki.1003-8728.20220116
基金项目: 国家自然科学基金项目(51975274)与国家科技重大专项(J2019-Ⅲ-0023-0067)
详细信息
    作者简介:

    苏楠阳(1989−),工程师,学士,研究方向为变速直升机传动动力学、热分析研究,duominuaa@163.com

    通讯作者:

    鲍和云,教授,硕士生导师,博士,baoheyun@nuaa.edu.cn

  • 中图分类号: TG156

Analysis of Thermal Characteristics of Friction Pair in Wet Friction Clutch

  • 摘要: 为了研究湿式多片离合器摩擦副的发热情况,选取其中一对摩擦副,建立了瞬态及稳态热分析有限元模型,将油槽类型转化为当量圆柱体并建立对流换热模型,计算了对流换热系数,并以此为边界条件,计算不同时间下摩擦片与对偶钢片沿径向和轴向的温度分布。同时,针对不同材料及槽型对摩擦副温度的影响进行分析,并采用SAE#2试验机,测试了不同材料及槽型的摩擦副温度,与理论分析进行了对比,温度变化趋势一致,误差较小。
  • 图  1  瞬态热仿真模型

    Figure  1.  The transient thermal simulation model

    图  2  油槽内润滑油速度示意图

    Figure  2.  Schematic diagram of lubricating oil velocity in the oil groove

    图  3  圆环上热流密度按照时间步长加载

    Figure  3.  Time-stepped loading of heat flux density on the circular ring

    图  4  钢片温度

    Figure  4.  Temperature distribution in the steel plate

    图  5  摩擦片温度

    Figure  5.  Temperature distribution in the friction disk

    图  6  钢片内部温度传导

    Figure  6.  Internal temperature conduction in the steel plate

    图  7  摩擦片内部温度传导

    Figure  7.  Internal temperature conduction in the friction disk

    图  8  摩擦片槽型

    Figure  8.  Geometry of the friction disk groove

    图  9  接合过程中不同槽型摩擦副最高温度分布

    Figure  9.  Distribution of maximum temperatures in different groove types during the joining process

    图  10  接合过程中不同材料摩擦副最高温度分布

    Figure  10.  Distribution of maximum temperatures in different materials of the friction pair during the joining process

    图  11  SAE#2试验机

    Figure  11.  SAE #2 test machine

    图  12  热电偶布置

    Figure  12.  Arrangement of thermocouples

    图  13  摩擦片钢片安装图

    Figure  13.  Installation diagram for the friction disk and steel plate

    图  14  试验仿真数据对比

    Figure  14.  Comparison of experimental and simulation data

    表  1  摩擦副最高温试验与仿真数据对比

    Table  1.   Comparison of maximum temperatures between experimental and simulation data for the friction pair

    序号摩擦副槽型材料试验平均值/℃试验最大值/℃仿真值/℃平均误差/%幅值误差/%
    1 双向平行槽 纸基 163.6 169.9 168.34 2.9 0.9
    2 三向平行槽 纸基 163.4 166.9 165.19 1.1 1
    3 华夫槽 纸基 153.3 161.3 148.08 3.4 8.2
    4 螺旋槽 纸基 184.5 188.6 166.0 10.0 12.0
    5 双圆弧槽 纸基 161.3 168.5 150.0 7.0 11.0
    6 华夫槽 铜基 116.4 120.8 114.5 1.63 5.2
    7 华夫槽 铁基 113.0 118.0 118.6 5.0 0.5
    下载: 导出CSV
  • [1] BASSI A, MILANI M, MONTORSI L, et al. Dynamic analysis of the lubrication in a wet clutch of a hydromechanical variable transmission[J]. SAE International Journal of Commercial Vehicles, 2016, 9(2): 280-290. doi: 10.4271/2016-01-8099
    [2] XIAO B, WU W, HU J, et al. Fluid-solid coupled heat transfer investigation of wet clutches[J]. SAE International Journal of Commercial Vehicles, 2017
    [3] BAO H Y, KONG W D, HOU X N, et al. Analysis on temperature field of friction pair of aviation friction clutch based on different groove shapes of friction disk[J]. Journal of Mechanical Science and Technology, 2021, 35(8): 3735-3742. doi: 10.1007/s12206-021-0742-6
    [4] YANG W, TANG X L. Numerical analysis for heat transfer laws of a wet multi-disk clutch during transient contact[J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2017, 18(7-8): 599-613. doi: 10.1515/ijnsns-2017-0081
    [5] MAHMUD S F, PAHLOVY S A, OGAWA M. Simulation to estimate the output torque characteristics and temperature rise of a transmission wet clutch during the engagement process[J]. SAE International Journal of Commercial Vehicles, 2018
    [6] NOVI T, CARCASCI C, CERTOSINI C, et al. FEM thermal analysis of a semi-active differential[J]. Procedia Structural Integrity, 2018, 12: 145-164. doi: 10.1016/j.prostr.2018.11.099
    [7] LIN T J, TAN Z R, HE Z Y, et al. Analysis of influencing factors on transient temperature field of wet clutch friction plate used in marine gearbox[J]. Industrial Lubrication and Tribology, 2018, 70(2): 241-249. doi: 10.1108/ILT-08-2016-0181
    [8] LI Z B, XIE F W, SUN J Y, et al. Influence of structural parameters of friction pair on oil temperature rise in hydro-viscous clutch[J]. Industrial Lubrication and Tribology, 2020, 72(1): 79-85.
    [9] 陈静, 施伟. 离合器CFD仿真分析[J]. 汽车实用技术, 2013(11): 41-46. doi: 10.3969/j.issn.1671-7988.2013.11.012

    CHEN J, SHI W. CFD simulation analysis of clutch[J]. Automobile Applied Technology, 2013(11): 41-46. (in Chinese) doi: 10.3969/j.issn.1671-7988.2013.11.012
    [10] 郭程杰, 褚超美, 陈旭. 湿式双离合器温度场影响因素仿真分析[J]. 农业装备与车辆工程, 2020, 58(2): 30-34. doi: 10.3969/j.issn.1673-3142.2020.02.007

    GUO C J, CHU C M, CHEN X. Simulation analysis of influencing factors of wet double clutch temperature field[J]. Agricultural Equipment & Vehicle Engineering, 2020, 58(2): 30-34. (in Chinese) doi: 10.3969/j.issn.1673-3142.2020.02.007
    [11] 胡宏伟, 王泽湘, 张志刚, 等. 湿式离合器接合过程中瞬态温度场的仿真[J]. 中国科技论文, 2015, 10(4): 467-470. doi: 10.3969/j.issn.2095-2783.2015.04.020

    HU H W, WANG Z X, ZHANG Z G, et al. Simulation of transient temperature field of wet clutch engagement[J]. China Sciencepaper, 2015, 10(4): 467-470. (in Chinese) doi: 10.3969/j.issn.2095-2783.2015.04.020
    [12] 陆建荣. 基于有限单元法湿式离合器摩擦副温度场分析[J]. 机械设计与制造, 2016(11): 166-170. doi: 10.3969/j.issn.1001-3997.2016.11.042

    LU J R. Analysis of friction pair temperature field in wet typed clutch based on finite element method[J]. Machinery Design & Manufacture, 2016(11): 166-170. (in Chinese) doi: 10.3969/j.issn.1001-3997.2016.11.042
    [13] 顾健华, 黄晨, 陈旭. 湿式离合器摩擦副瞬态温度场仿真分析[J]. 农业装备与车辆工程, 2019, 57(1): 28-32.

    GU J H, HUANG C, CHEN X. Simulation analysis of transient temperature field of friction pair of wet clutch[J]. Agricultural Equipment & Vehicle Engineering, 2019, 57(1): 28-32. (in Chinese)
    [14] 程铖, 陈俐. 离合器温度场计算中摩擦热流密度模型的比较研究[J]. 机械传动, 2019, 43(2): 1-7. doi: 10.16578/j.issn.1004.2539.2019.02.001

    CHENG C, CHEN L. Study on the comparison between two models of frictional heat flux in calculation of clutch temperature field[J]. Journal of Mechanical Transmission, 2019, 43(2): 1-7. (in Chinese) doi: 10.16578/j.issn.1004.2539.2019.02.001
    [15] 杨勇强, 王忠民, 王永琴. 湿式离合器摩擦片接合过程温度场分析[J]. 机械传动, 2019, 43(10): 123-127. doi: 10.16578/j.issn.1004.2539.2019.10.023

    YANG Y Q, WANG Z M, WANG Y Q. Temperature field analysis for engagement process of friction disc in wet clutch[J]. Journal of Mechanical Transmission, 2019, 43(10): 123-127. (in Chinese) doi: 10.16578/j.issn.1004.2539.2019.10.023
    [16] 黄晨, 褚超美, 顾健华, 等. 湿式双离合器摩擦副瞬态温度场特性仿真[J]. 机械设计与制造, 2019(11): 150-153. doi: 10.19356/j.cnki.1001-3997.2019.11.038

    HUANG C, CHU C M, GU J H, et al. Simulation of transient temperature field characteristics of wet dual-clutch friction pair[J]. Machinery Design & Manufacture, 2019(11): 150-153. (in Chinese) doi: 10.19356/j.cnki.1001-3997.2019.11.038
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  67
  • HTML全文浏览量:  84
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-24
  • 刊出日期:  2023-09-30

目录

    /

    返回文章
    返回