留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑磨耗及不等厚辐板的轨道车轮振动声辐射特性

刘跃杰 文永蓬 周月 吴俊汉

刘跃杰,文永蓬,周月, 等. 考虑磨耗及不等厚辐板的轨道车轮振动声辐射特性[J]. 机械科学与技术,2023,42(9):1508-1515 doi: 10.13433/j.cnki.1003-8728.20220115
引用本文: 刘跃杰,文永蓬,周月, 等. 考虑磨耗及不等厚辐板的轨道车轮振动声辐射特性[J]. 机械科学与技术,2023,42(9):1508-1515 doi: 10.13433/j.cnki.1003-8728.20220115
LIU Yuejie, WEN Yongpeng, ZHOU Yue, WU Junhan. Characteristics of Vibration and Sound Radiation for Railway Wheels Considering Wear and Unequal Thickness Web Plate[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(9): 1508-1515. doi: 10.13433/j.cnki.1003-8728.20220115
Citation: LIU Yuejie, WEN Yongpeng, ZHOU Yue, WU Junhan. Characteristics of Vibration and Sound Radiation for Railway Wheels Considering Wear and Unequal Thickness Web Plate[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(9): 1508-1515. doi: 10.13433/j.cnki.1003-8728.20220115

考虑磨耗及不等厚辐板的轨道车轮振动声辐射特性

doi: 10.13433/j.cnki.1003-8728.20220115
基金项目: 国家自然科学基金项目(11472176)、上海市自然科学基金项目(15ZR1419200)、上海市轨道交通结构耐久与系统安全重点实验室开放基金项目(R202204)及西南交通大学轨道交通运载系统全国重点实验室开放课题(TPL2103)
详细信息
    作者简介:

    刘跃杰(1995−),硕士研究生,研究方向为城市轨道车轮结构优化设计方法,2874201672@qq.com

    通讯作者:

    文永蓬,副教授,硕士生导师,yp_wen@163.com

  • 中图分类号: U270.2

Characteristics of Vibration and Sound Radiation for Railway Wheels Considering Wear and Unequal Thickness Web Plate

  • 摘要: 为了降低轨道车轮振动的声辐射,以双S型辐板车轮为研究对象,建立了反映磨耗及不等厚辐板的9种城市轨道车轮三维有限元模型,分别获得了车轮在各阶振动模态下的固有频率及结构振型,对比分析了不同车轮的声功率级响应曲线,从而得到车轮在不同磨耗条件及不等厚特征情况下的声辐射水平。研究结果表明:与初始现役车轮相比,辐板上部不等厚车轮在峰值声功率级上降低了13.82 dBA;随着踏面磨耗加深,车轮的噪声逐渐增大;辐板上部不等厚车轮在不同磨耗下的最大声功率级均小于初始现役车轮。
  • 图  1  双S型车轮断面形状及辐板区域划分

    Figure  1.  Cross-sectional shape of the double S-type wheel and division of the spoke plate region

    图  2  不等厚辐板车轮模型

    Figure  2.  The nonuniform thickness spoke plate wheel model

    图  3  车轮踏面磨耗表征

    Figure  3.  Characterization of wheel tread wear

    图  4  磨耗车轮模型

    Figure  4.  The worn wheel model

    图  5  辐板上部不等厚车轮三维有限元网格模型

    Figure  5.  The three-dimensional finite element mesh model of upper nonuniform thickness wheels on spoke plates

    图  6  约束和载荷的位置

    Figure  6.  Positions of constraints and loads

    图  7  轮轨激励位置

    Figure  7.  The Position of wheel-rail excitation

    图  8  Enclosure空气域

    Figure  8.  Air domain of the enclosure

    图  9  轨道车轮声辐射仿真流程图

    Figure  9.  Simulation process for wheel-rail acoustic radiation

    图  10  辐板不等厚车轮声功率级曲线

    Figure  10.  Comparison of sound power level curves for nonuniform thickness wheels on spoke plates

    图  11  车轮在径向模态(r, 1)下的结构振型

    Figure  11.  Structural mode shapes of the wheel in radial mode (r, 1)

    图  12  不同磨耗下车轮声功率级曲线

    Figure  12.  Comparison of sound power level curves for the wheel under different wear conditions

    图  13  车轮在径向模态(r, 5)下的结构振型

    Figure  13.  Comparison of structural mode shapes for the wheel in radial mode (r, 5)

    图  14  不同磨耗下辐板上部不等厚车轮模型

    Figure  14.  The upper nonuniform thickness wheel model under different wear conditions

    图  15  上部不等厚车轮在不同磨耗下声功率级曲线

    Figure  15.  Comparison of sound power level curves for upper nonuniform thickness wheels under different wear conditions

    图  16  不同磨耗下上部不等厚车轮与初始车轮的噪声演变

    Figure  16.  Noise evolution of upper nonuniform thickness wheels compared to initial wheels under different wear conditions

    表  1  不等厚辐板车轮轴向振动模态的固有频率

    Table  1.   The natural frequency distribution of wheel axial vibration modes Hz

    轴向模态
    m, n
    初始
    车轮
    上部
    不等厚
    中部
    不等厚
    下部
    不等厚
    (0, 0) 319 335 378 444
    (0, 1) 205 216 242 299
    (0, 2) 403 425 431 424
    (0, 3) 1080 1115 1101 1079
    (0, 4) 1940 1991 1960 1935
    (0, 5) 2897 2897 2919 2888
    (0, 6) 3906 4007 3932 3892
    (1, 0) 1735 1827 1700 1839
    (1, 1) 1960 2174 1927 2010
    (1, 2) 2443 2711 2384 2488
    (1, 3) 3175 3459 3064 3238
    (1, 4) 4101 4425 4077 4170
    下载: 导出CSV

    表  2  不等厚辐板车轮径向振动模态的固有频率

    Table  2.   The natural frequency distribution of wheel radial vibration modes Hz

    径向模态
    r, n
    初始车轮上部
    不 等厚
    中部
    不 等厚
    下部
    不 等厚
    r, 0)2366261726622474
    r, 1)82984110611146
    r, 2)1358135817191630
    r, 3)2075224925022202
    r, 4)2850314632092881
    r, 5)3683408339603663
    下载: 导出CSV

    表  3  不等厚辐板车轮周向振动模态的固有频率

    Table  3.   The natural frequency distribution of wheel circumferential vibration modes Hz

    周向模态
    c, n
    初始车轮上部
    不等厚
    中部
    不等厚
    下部
    不等厚
    c, 0)549542568675
    下载: 导出CSV

    表  4  磨耗车轮轴向振动模态的固有频率

    Table  4.   The natural frequency distribution of wheel axial vibration modes Hz

    轴向模态(m, n初始车轮轻微磨耗严重磨耗极限磨耗
    (0, 0)319342371403
    (0, 1)205223246272
    (0, 2)403393380360
    (0, 3)108010531011944
    (0, 4)1940189718241706
    (0, 5)2897283527292550
    (0, 6)3906382236814350
    (1, 0)1735179818591913
    (1, 1)1960202521082188
    (1, 2)2443245624672474
    (1, 3)3175313730772976
    (1, 4)4101405739813870
    下载: 导出CSV

    表  5  磨耗车轮径向振动模态的固有频率

    Table  5.   The natural frequency distribution of wheel radial vibration modes Hz

    径向模态(r, n初始车轮轻微磨耗严重磨耗极限磨耗
    r, 0)2366244725632686
    r, 1)8298819571033
    r, 2)1358142315241621
    r, 3)2075214422612390
    r, 4)2850288829643026
    r, 5)3683367836753637
    下载: 导出CSV

    表  6  磨耗车轮周向振动模态的固有频率

    Table  6.   The natural frequency distribution of wheel circumferential vibration modes Hz

    周向模态(c, n初始车轮轻微磨耗严重磨耗极限磨耗
    c, 0)549595657731
    下载: 导出CSV

    表  7  磨耗下上部不等厚车轮与初始车轮峰值声功率级

    Table  7.   Peak sound power levels of upper nonuniform thickness wheels and initial wheels under wear conditions

    磨耗深度/mm初始车轮/dBA上部不等厚车轮/dBA
    0 112.66 98.84
    9.67 119.83 101.92
    19.34 123.78 104.42
    29.00 124.80 118.10
    下载: 导出CSV
  • [1] THOMPSON D J, JONES C J C. A review of the modelling of wheel/rail noise generation[J]. Journal of Sound and Vibration, 2000, 231(3): 519-536. doi: 10.1006/jsvi.1999.2542
    [2] ZHOU X, HAN J, ZHAO Y, et al. Characteristics of vibration and sound radiation of metro resilient wheel[J]. Chinese Journal of Mechanical Engineering, 2019, 32(1): 67. doi: 10.1186/s10033-019-0383-1
    [3] 韩健, 肖新标, 王瑞乾, 等. 迷宫式阻尼环装置对车轮的减振降噪效果[J]. 噪声与振动控制, 2015, 35(1): 83-88.

    HAN J, XIAO X B, WANG R Q, et al. Effect of labyrinth ring damping device on vibration and noise reduction of railway wheels[J]. Noise and Vibration Control, 2015, 35(1): 83-88. (in Chinese)
    [4] 刘林芽, 雷晓燕, 练松良. 车轮参数对轮轨噪声的影响[J]. 噪声与振动控制, 2007, 27(5): 74-77.

    LIU L Y, LEI X Y, LIAN S L. Influence of wheel parameters on wheel/rail noise[J]. Noise and Vibration Control, 2007, 27(5): 74-77. (in Chinese)
    [5] FABRE F, THEYSSEN J S, PIERINGER A, et al. Sound radiation from railway wheels including ground reflections: a half-space formulation for the fourier boundary element method[J]. Journal of Sound and Vibration, 2021, 493: 115822. doi: 10.1016/j.jsv.2020.115822
    [6] GUTIÉRREZ-GIL J, GARCIA-ANDRÉS X, MARTÍNEZ-CASAS J, et al. Optimized perforation schemes in railway wheels toward acoustic radiation mitigation[J]. Journal of Vibration and Acoustics, 2020, 142(4): 041009. doi: 10.1115/1.4046681
    [7] 钱鼎玮, 杨新文, 刘晓波, 等. 轨道车辆车轮辐板阻尼层对其降噪效果的影响分析[J]. 动力学与控制学报, 2020, 18(3): 44-50.

    QIAN D W, YANG X W, LIU X B, et al. Effect of web damping layer on noise reduction of rail vehicle wheel[J]. Journal of Dynamics and Control, 2020, 18(3): 44-50. (in Chinese)
    [8] 杨新文, 王金, 练松良. 轨道交通轮轨噪声研究进展[J]. 铁道学报, 2017, 39(9): 100-108.

    YANG X W, WANG J, LIAN S L. Review on wheel/rail noise in rail transit[J]. Journal of The China Railway Society, 2017, 39(9): 100-108. (in Chinese)
    [9] 葛帅, 成功, 圣小珍, 等. 周期性对车轮振动响应的影响[J]. 噪声与振动控制, 2020, 40(6): 144-147.

    GE S, CHENG G, SHENG X Z, et al. An effect of periodicity on wheel vibration responses[J]. Noise and Vibration Control, 2020, 40(6): 144-147. (in Chinese)
    [10] 宋国良. 低噪声车轮腹板开孔最优参数研究[D]. 兰州: 兰州交通大学, 2020

    SONG G L. Study on the optimum parameters of web opening of low noise vehicle wheel[D]. Lanzhou: Lanzhou Jiaotong University, 2020. (in Chinese)
    [11] 韩立, 辜小安, 伍向阳, 等. 基于预应力的高速列车车轮振动声辐射特性[J]. 中国铁道科学, 2019, 40(6): 86-94.

    HAN L, GU X A, WU X Y, et al. Vibration and acoustic radiation characteristics of High-Speed train wheels based on prestress[J]. China Railway Science, 2019, 40(6): 86-94. (in Chinese)
    [12] 文永蓬, 郑晓明, 吴爱中, 等. 基于BESO算法的城市轨道车轮拓扑优化[J]. 机械工程学报, 2020, 56(10): 191-199. doi: 10.3901/JME.2020.10.191

    WEN Y P, ZHENG X M, WU A Z, et al. Topology optimization of urban rail wheel based on BESO algorithm[J]. Journal of Mechanical Engineering, 2020, 56(10): 191-199. (in Chinese) doi: 10.3901/JME.2020.10.191
    [13] 郑晓明, 文永蓬, 尚慧琳, 等. 考虑UIC强度准则的轨道车轮辐板渐进结构拓扑优化方法[J]. 交通运输工程学报, 2019, 19(5): 84-95.

    ZHENG X M, WEN Y P, SHANG H L, et al. Evolutionary structure topology optimization method of rail wheel web plate considering UIC strength criterion[J]. Journal of Traffic and Transportation Engineering, 2019, 19(5): 84-95. (in Chinese)
    [14] 文永蓬, 徐小峻, 尚慧琳, 等. 考虑热力耦合的轨道车辆车轮建模与仿真[J]. 交通运输工程学报, 2016, 16(5): 30-41.

    WEN Y P, XU X J, SHANG H L, et al. Modeling and simulation of railway vehicle wheel considering thermo-mechanical coupling[J]. Journal of Traffic and Transportation Engineering, 2016, 16(5): 30-41. (in Chinese)
    [15] 文永蓬, 郑晓明, 尚慧琳, 等. 考虑不同辐板的城市轨道车轮热力耦合特性研究[J]. 机械强度, 2018, 40(1): 165-170.

    WEN Y P, ZHENG X M, SHANG H L, et al. Study on the thermal-mechanical coupling for different plate urban railway vehicle wheels[J]. Journal of Mechanical Strength, 2018, 40(1): 165-170. (in Chinese)
    [16] 文永蓬, 刘跃杰, 周月等. 城市轨道车轮结构振动-声辐射一体化优化方法[J]. 交通运输工程学报, 2023, 23(3): 137-147.

    WEN Y P, LIU Y J, ZHOU Y, et al. Integrated optimization method of vibration and sound radiation for urban rail wheel structure[J]. Journal of Traffic and Transportation Engineering, 2023, 23(3): 137-147. (in Chinese)
    [17] 文永蓬, 周伟浩, 徐小峻, 等. 考虑热力耦合的轨道车轮辐板参数优化研究[J]. 铁道科学与工程学报, 2016, 13(10): 2042-2050.

    WEN Y P, ZHOU W H, XU X J, et al. Study on parameter optimization for the rail wheel considering thermal-mechanical coupling[J]. Journal of railway Science and Engineering, 2016, 13(10): 2042-2050. (in Chinese)
    [18] 韩健, 肖新标, 金学松, 等. 城市轨道交通车轮振动声辐射特性[J]. 机械工程学报, 2012, 48(10): 115-121. doi: 10.3901/JME.2012.10.115

    HAN J, XIAO X B, JIN X S, et al. Sound radiation characteristics of wheels used in urban rail traffic[J]. Journal of Mechanical Engineering, 2012, 48(10): 115-121. (in Chinese) doi: 10.3901/JME.2012.10.115
    [19] HARMONOISE. Definition of track influence: Roughness in rolling noise[R]. TNO: HARMONOISE HARD-TR-020813-AEA10, 2003.
  • 加载中
图(16) / 表(7)
计量
  • 文章访问数:  63
  • HTML全文浏览量:  47
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-22
  • 刊出日期:  2023-09-30

目录

    /

    返回文章
    返回