留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非线性力支承下的磁悬浮转子陀螺效应解耦控制

窦甄 杨立平 任正义 孙苗苗

窦甄,杨立平,任正义, 等. 非线性力支承下的磁悬浮转子陀螺效应解耦控制[J]. 机械科学与技术,2023,42(9):1392-1401 doi: 10.13433/j.cnki.1003-8728.20220114
引用本文: 窦甄,杨立平,任正义, 等. 非线性力支承下的磁悬浮转子陀螺效应解耦控制[J]. 机械科学与技术,2023,42(9):1392-1401 doi: 10.13433/j.cnki.1003-8728.20220114
DOU Zhen, YANG Liping, REN Zhengyi, SUN Miaomiao. Gyroscopic Effect Decoupling Control of Maglev Rotor Supported by Nonlinear Force[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(9): 1392-1401. doi: 10.13433/j.cnki.1003-8728.20220114
Citation: DOU Zhen, YANG Liping, REN Zhengyi, SUN Miaomiao. Gyroscopic Effect Decoupling Control of Maglev Rotor Supported by Nonlinear Force[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(9): 1392-1401. doi: 10.13433/j.cnki.1003-8728.20220114

非线性力支承下的磁悬浮转子陀螺效应解耦控制

doi: 10.13433/j.cnki.1003-8728.20220114
基金项目: 国家“863”高技术研究发展计划项目(2013AA050802)
详细信息
    作者简介:

    窦甄(1995−),硕士研究生,研究方向为转子动力学、磁悬浮轴承,695572178@qq.com

    通讯作者:

    杨立平,讲师,博士,yanglipingylp02@126.com

  • 中图分类号: TH133.3

Gyroscopic Effect Decoupling Control of Maglev Rotor Supported by Nonlinear Force

  • 摘要: 电磁轴承非线性力支承的飞轮转子各自由度之间产生的强耦合,影响轴承转子系统稳定性。为此建立了径向四自由度的非线性电磁力-刚性转子动力学模型。在此基础上,提出了一种自适应径向基神经网络和滑模控制结合的算法(Adaptive RBFNN&SMC)。基于RBFNN对非线性电磁力和陀螺效应进行整体补偿,应用双曲正切函数作为滑模鲁棒项,对滑模控制进行改进,改善了滑模算法的抖振、抑制了质量不平衡扰动和随机扰动。根据Lyapunov稳定性理论证明了系统的渐进稳定性。最后通过仿真将提出的算法与PID算法和$ \alpha $阶逆系统算法对比,结果表明该算法能有效补偿非线性力、解耦系统和改善抖振问题,同时对于外界扰动具有良好的抑制效果。
  • 图  1  转子受力简图

    Figure  1.  Simplified diagram of rotor forces

    图  2  电磁轴承控制回路示意图

    Figure  2.  Schematic diagram of the electromagnetic bearing control circuit

    图  3  自适应RBFNN&SMC控制闭环框图

    Figure  3.  Closed-loop diagram of adaptive RBFNN&SMC control

    图  4  RBFNN结构

    Figure  4.  Structure of RBFNN

    图  5  开关函数、双曲正切函数曲线

    Figure  5.  The switching function and hyperbolic tangent function curves

    图  6  PID算法下加速响应曲线

    Figure  6.  The acceleration response curve under the PID algorithm

    图  7  本文算法下加速响应曲线

    Figure  7.  The acceleration response curve under the proposed algorithm

    图  8  600 W·h磁悬浮飞轮实验样机本体

    Figure  8.  600 W·h magnetic suspension flywheel experimental prototype

    图  9  实验数据滤波效果图

    Figure  9.  The effect of filtering on experimental data

    图  10  本文算法上电磁轴承x方向噪声曲线及响应曲线

    Figure  10.  Noise curve and response curve in the x-direction of electromagnetic bearing under the proposed algorithm

    图  11  本文算法yuxdyd噪声干扰响应曲线

    Figure  11.  Disturbance response curves of yu, xd, and yd under the proposed algorithm

    图  12  本文算法所有自由度受扰响应曲线

    Figure  12.  Disturbance response curves of all degrees of freedom under the proposed algorithm

    图  13  4 500 r/min xu非零初始状态响应对比

    Figure  13.  Response comparison of xu with nonzero initial state at 4 500 r/min

    图  14  4 500 r/min yu非零初始状态响应对比

    Figure  14.  Response comparison of yu with nonzero initial state at 4 500 r/min

    图  15  4 500 r/min xd非零初始状态响应对比

    Figure  15.  Response comparison of xd with nonzero initial state at 4 500 r/min

    图  16  4 500 r/min yd非零初始状态响应对比

    Figure  16.  Response comparison of yd with nonzero initial state at 4 500 r/min

    图  17  本文算法下初始状态响应

    Figure  17.  Initial state response under the proposed algorithm

    图  18  本文算法受初始扰动解耦误差

    Figure  18.  Decoupling error under the proposed algorithm with initial disturbance

    图  19  4 500 r/min PID控制下不同偏心距的xu响应对比

    Figure  19.  Response comparison of xu with different eccentricities under PID control at 4 500 r/min

    图  20  4 500 r/min 本文算法下不同偏心距的xu响应对比

    Figure  20.  Response comparison of xu with different eccentricities under the proposed algorithm at 4 500 r/min

    图  21  采用${{\rm{sgn}}} \left( {{{\boldsymbol{s}}}} \right)$的控制电流曲线

    Figure  21.  Control current curve using sgn(s)

    图  22  采用$\tan ({{\boldsymbol{s}}/}{\boldsymbol{\delta}} ) $的控制电流曲线

    Figure  22.  Control current curve using $\tan ({{\boldsymbol{s}}/}{\boldsymbol{\delta}} ) $

    表  1  系统计算参数

    Table  1.   System calculation parameters

    参数数值参数数值
    $\;{{\boldsymbol{\varLambda }}}$ ${\text{diag}}\left( {80,80,80,80} \right)$ ${k_{i} }$ 0
    ${{\boldsymbol{\phi}} ^{ - 1} }$ ${\text{diag}}\left( {15,15,15,15} \right)$ $ {k_{\text{d}}} $ 8.34
    ${{\boldsymbol{\gamma}} }$ ${\text{diag}}\left( {20,20,20,20} \right)$ ${l_{\text{u}}}/{\text{m}}$ 0.273
    ${\boldsymbol{\nu}} $ 20 ${l_{\text{d}}}/{\text{m}}$ 0.282
    ${\boldsymbol{\delta}} $ $5 \times {10^{ - 3}}$ $m/{\text{kg}}$ 56.8
    ${b_{j} }$ 10 $J/({\text{kg}} \cdot {{\text{m}}^{-2}})$ 1.14
    ${ { {\boldsymbol{c} } }_{i} }$ $[ { - 3}\quad { - 2}\quad{ - 1}\quad 0\quad \\ 1\quad 2\quad 3 ] \times {10^{ - 6} }$ ${J_{\textit{z}}}/({\text{kg}} \cdot {{\text{m}}^{-2}})$ 0.93
    ${k_{\text{p}}}$ $16\;680 $ $e_0/{\text{m}}$ $1.59 \times {10^{ - 6}}$
    下载: 导出CSV
  • [1] SRINIVAS R S, TIWARI R, KANNABABU C. Application of active magnetic bearings in flexible rotordynamic systems-A state-of-the-art review[J]. Mechanical Systems and Signal Processing, 2018, 106: 537-572. doi: 10.1016/j.ymssp.2018.01.010
    [2] DRAGONI E. Mechanical design of flywheels for energy storage: a review with state-of-the-art developments[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2019, 233(5): 995-1004. doi: 10.1177/1464420717729415
    [3] 魏彤, 沈繁呈. 非线性强陀螺效应磁悬浮转子的解耦控制[J]. 轴承, 2014(11): 6-11. doi: 10.3969/j.issn.1000-3762.2014.11.003

    WEI T, SHENG F C. Decoupling control for magnetically suspended rotor with non-linearity strong gyroscopic effect[J]. Bearing, 2014(11): 6-11. (in Chinese) doi: 10.3969/j.issn.1000-3762.2014.11.003
    [4] YI J, REN G P, ZHANG H T, et al. A model reference adaptive controller with feedforward decoupling for active magnetic bearing rotor system[C]//Proceedings of the 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). Chengdu: IEEE, 2019
    [5] WANG C, ZHENG S Q, XIE J J. Decoupling control for high-speed magnetically suspended rotor systems using linear active disturbance rejection method[C]//Proceedings of the 2018 37th Chinese Control Conference (CCC). Wuhan: IEEE, 2018
    [6] ZHANG G, YIN Q Z, JIANG D D, et al. Research on nonlinear dynamics of five-DOF active magnetic bearings-rotor system[J]. Journal of Mechanical Engineering, 2010, 46(20): 15-21. doi: 10.3901/JME.2010.20.015
    [7] SAEED N A F A H, KAMEL M. Nonlinear PD-controller to suppress the nonlinear oscillations of horizontally supported Jeffcott-rotor system[J]. International Journal of Non-Linear Mechanics, 2016, 87: 109-124. doi: 10.1016/j.ijnonlinmec.2016.10.003
    [8] KANDIL A, SAYED M, SAEED N A. On the nonlinear dynamics of constant stiffness coefficients 16-pole rotor active magnetic bearings system[J]. European Journal of Mechanics - A/Solids, 2020, 84: 104051. doi: 10.1016/j.euromechsol.2020.104051
    [9] AHRENS M, KUČERA L. Cross feedback control of a magnetic bearing system-controller design considering gyroscopic effects[C]//Proceedings of the 3rd International Symposium on Magnetic Suspension Technology. Tallahassee: ETH, 1996: 177-191
    [10] OUYANG H M, LIU F, ZHANG G M, et al. Vibration suppression for rotor system of magnetic suspended wind turbines using cross-feedback-based sliding mode control[C]//Proceedings of 2015 IEEE/SICE International Symposium on System Integration. Nagoya: IEEE, 2015: 112-115
    [11] 李国栋, 张庆春, 王世俊, 等. 电磁轴承陀螺力矩耦合及其交叉解耦分析[J]. 哈尔滨工业大学学报, 2005, 37(12): 1618-1620. doi: 10.3321/j.issn:0367-6234.2005.12.006

    LI G D, ZHANG Q C, WANG S J, et al. Analysis of gyroscopic coupling and cross decoupling properties on the electromagnetic bearing[J]. Journal of Harbin Institute of Technology, 2005, 37(12): 1618-1620. (in Chinese) doi: 10.3321/j.issn:0367-6234.2005.12.006
    [12] CHENG X, CHENG B X, DENG S, et al. State-feedback decoupling control of 5-DOF magnetic bearings based on α-order inverse system[J]. Mechatronics, 2020, 68: 102358. doi: 10.1016/j.mechatronics.2020.102358
    [13] YU Y J, SUN X D, ZHANG W Y. Modeling and decoupling control for rotor system in magnetic levitation wind turbine[J]. IEEE Access, 2017, 5: 15516-15528. doi: 10.1109/ACCESS.2017.2732450
    [14] WANG S S, ZHU H Q, WU M Y, et al. Active disturbance rejection decoupling control for three-degree-of-freedom six-pole active magnetic bearing based on BP neural network[J]. IEEE Transactions on Applied Superconductivity, 2020, 30(4): 3603505.
    [15] KONDAIAH V V, RAO J S, RAO V V S. Estimation of loss factor and system parameters of active magnetic thrust bearing using RBF neural networks and differential evolution[C]//Proceedings of 2015 IEEE Workshop on Computational Intelligence: Theories, Applications and Future Directions. Kanpur: IEEE, 2015: 1-6
    [16] 赵宏凯, 蒋科坚. 基于RBF神经网络的电磁轴承基础激励主动控制研究[J]. 机电工程, 2020, 37(12): 1425-1431. doi: 10.3969/j.issn.1001-4551.2020.12.005

    ZHAO H K, JIANG K J. Active control for the base motion of active magnetic bearings based on RBF neural network[J]. Journal of Mechanical & Electrical Engineering, 2020, 37(12): 1425-1431. (in Chinese) doi: 10.3969/j.issn.1001-4551.2020.12.005
    [17] ZAD H S, KHAN T I, LAZOGLU I. Design and adaptive sliding-mode control of hybrid magnetic bearings[J]. IEEE Transactions on Industrial Electronics, 2018, 65(3): 2537-2547. doi: 10.1109/TIE.2017.2739682
    [18] TSAI Y W, PHAN V D, DUONG V A. Sliding mode control for active magnetic bearings of a flywheel energy storage system[C]//Proceedings of 2016 IEEE International Conference on Control and Robotics Engineering. Singapore: IEEE, 2016: 1-5
    [19] GAO H, MENG X H, QIAN K J. The impact analysis of beating vibration for active magnetic bearing[J]. IEEE Access, 2019, 7: 134104-134112. doi: 10.1109/ACCESS.2019.2932723
    [20] MANDO A K, YEMÉLÉ D, SOKAMTE W T, et al. Structural stability and control at high speed regime of two-dimensional active magnetic bearing systems[J]. Journal of Sound and Vibration, 2019, 455: 161-187. doi: 10.1016/j.jsv.2019.04.032
    [21] 刘金琨. 滑模变结构控制MATLAB仿真[M]. 3版. 北京: 清华大学出版社, 2015: 38-40

    LIU J K. Sliding mode control design and MATLAB simulation[M]. 3rd ed. Beijing: Tsinghua University Press, 2015: 38-40. (in Chinese)
    [22] POLYCARPOU M M, IOANNOU P A. A robust adaptive nonlinear control design[J]. Automatica, 1996, 32(3): 423-427. doi: 10.1016/0005-1098(95)00147-6
  • 加载中
图(22) / 表(1)
计量
  • 文章访问数:  89
  • HTML全文浏览量:  61
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-13
  • 刊出日期:  2023-09-30

目录

    /

    返回文章
    返回