留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种复杂图形加工工艺路径优化方法研究

潘盛湖 张小军

潘盛湖,张小军. 一种复杂图形加工工艺路径优化方法研究[J]. 机械科学与技术,2023,42(9):1402-1408 doi: 10.13433/j.cnki.1003-8728.20220113
引用本文: 潘盛湖,张小军. 一种复杂图形加工工艺路径优化方法研究[J]. 机械科学与技术,2023,42(9):1402-1408 doi: 10.13433/j.cnki.1003-8728.20220113
PAN Shenghu, ZHANG Xiaojun. Study on Path Optimization Method of Complex Graphics Processing[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(9): 1402-1408. doi: 10.13433/j.cnki.1003-8728.20220113
Citation: PAN Shenghu, ZHANG Xiaojun. Study on Path Optimization Method of Complex Graphics Processing[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(9): 1402-1408. doi: 10.13433/j.cnki.1003-8728.20220113

一种复杂图形加工工艺路径优化方法研究

doi: 10.13433/j.cnki.1003-8728.20220113
基金项目: 四川省教育厅项目(16ZA0070)
详细信息
    作者简介:

    潘盛湖(1982−),副教授,硕士,研究方向为机电一体化技术、石油机械智能化,psh2000psh@126.com

  • 中图分类号: TH164

Study on Path Optimization Method of Complex Graphics Processing

  • 摘要: 针对当前复杂图形加工中存在加工轨迹之间空行程多,导致加工过程耗时很长等缺陷,提出一种简单、易于实现的加工轨迹切换优化方法。分析了复杂图形加工轨迹切换控制方法,给出了缩短总空行程的优化思想。基于双向蚁群算法原理,推导了双向最大最小蚁群算法(Bidirectional max-min ant colony system,BMMAS),结合加工轨迹之间轨迹切换特点,对复杂图形加工工艺路径进行规划设计,给出了算法实现流程及加工工艺路径优化的实现要点。最后利用该方法对平面复杂图形进行了优化加工实验。实验结果表明,该加工方法计算简单,加工效率高,空行程路径长度较其它方法短,加工平稳。研究结果对相似复杂图形加工具有参考价值。
  • 图  1  优化路径对比

    Figure  1.  Path optimization comparison

    图  2  特征点提取方法

    Figure  2.  Feature point extraction

    图  3  零件切割顺序

    Figure  3.  Part cutting sequence

    图  4  候选特征点集合确定准则

    Figure  4.  Criteria for determining candidate feature point sets

    图  5  原理示意图

    Figure  5.  Schematic diagram of the principle

    图  6  零件排样

    Figure  6.  Parts layout

    图  7  运行结果

    Figure  7.  Operational results

    图  8  优化率直方图

    Figure  8.  Histogram of optimization rates

    表  1  数据对比

    Table  1.   Data comparison

    优化方法路径长度/mm运行时间/ms
    横向扫描法 23758.042 1677
    纵向扫描法 18 926.951 1864
    双向蚁群算法 12624.387 2801
    BMMAS算法 10796.142 2679
    无优化 24577.578 953
    下载: 导出CSV
  • [1] OYSU C, BINGUL Z. Application of heuristic and hybrid-GASA algorithms to tool-path optimization problem for minimizing airtime during machining[J]. Engineering Applications of Artificial Intelligence, 2009, 22(3): 389-396. doi: 10.1016/j.engappai.2008.10.005
    [2] 杨建军, 刘保业, 鞠录岩. 激光切割路径优化的双重编码改进遗传算法[J]. 解放军理工大学学报(自然科学版), 2012, 13(6): 684-687.

    YANG J J, LIU B Y, JU L Y. Dual coding improved genetic algorithm for optimization of laser cutting path[J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2012, 13(6): 684-687. (in Chinese)
    [3] 刘山和, 钱晓明, 楼佩煌, 等. 基于遗传蚁群混合算法的激光切割机路径优化[J]. 机械制造与自动化, 2016, 45(6): 92-95.

    LIU S H, QIAN X M, LOU P H, et al. Path pptimization of laser cutting based on combination of genetic algorithm and ant algorithm[J]. Machine Building & Automation, 2016, 45(6): 92-95. (in Chinese)
    [4] LAN J, LIN B, HUANG T, et al. Path planning for support heads in mirror-milling machining system[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91(1-4): 617-628. doi: 10.1007/s00170-016-9725-7
    [5] 侯普良, 刘建群, 高伟强. 基于改进蚁群算法的激光切割加工路径优化研究[J]. 机电工程, 2019, 36(6): 653-657.

    HOU P L, LIU J Q, GAO W Q. Optimization of laser cutting path based on improved ant colony algorithm[J]. Journal of Mechanical & Electrical Engineering, 2019, 36(6): 653-657. (in Chinese)
    [6] 李世红, 袁跃兰, 刘绅绅, 等. 基于蚁群算法的激光切割工艺路径优化[J]. 锻压技术, 2019, 44(4): 69-72.

    LI S H, YUAN Y L, LIU S S, et al. Optimization on laser cutting process path based on ant colony algorithm[J]. Forging & Stamping Technology, 2019, 44(4): 69-72. (in Chinese)
    [7] 王娜, 王海艳, 姜云春. 激光切割工艺路径的双向蚁群算法优化[J]. 锻压技术, 2020, 45(11): 30-35.

    WANG N, WANG H Y, JIANG Y C. Optimization on laser cutting process path based on bidirectional ant colony algorithm[J]. Forging & Stamping Technology, 2020, 45(11): 30-35. (in Chinese)
    [8] 李妮妮, 陈章位, 陈世泽. 基于局部搜索和遗传算法的激光切割路径优化[J]. 计算机工程与应用, 2010, 46(2): 234-236.

    LI N N, CHEN Z W, CHEN S Z. Optimization of laser cutting path based on local search and genetic algorithm[J]. Computer Engineering and Applications, 2010, 46(2): 234-236. (in Chinese)
    [9] 赵曦, 叶和平. 广义旅行商问题及其求解[J]. 东莞理工学院学报, 2007, 14(5): 75-80.

    ZHAO X, YE H P. Generalized traveling salesman problem and its solution[J]. Journal of Dongguan University of Technology, 2007, 14(5): 75-80. (in Chinese)
    [10] 陶维青, 肖松庆, 李林, 等. 基于双精英蚁群算法的配电网故障区段定位[J]. 合肥工业大学学报(自然科学版), 2020, 43(12): 1626-1632.

    TAO W Q, XIAO S Q, LI L, et al. Fault location of distribution network based on double elite ACO[J]. Journal of Hefei University of Technology (Natural Science), 2020, 43(12): 1626-1632. (in Chinese)
    [11] 汪贵庆, 袁杰, 沈庆宏. 基于精英蚁群算法的交通最优路径研究[J]. 南京大学学报(自然科学版), 2019, 55(5): 709-717.

    WANG G Q, YUAN J, SHEN Q H. Research on traffic optimal path based on elitist ant system[J]. Journal of Nanjing University (Natural Science), 2019, 55(5): 709-717. (in Chinese)
    [12] STÜTZLE T, HOOS H H. MAX-MIN ant system[J]. Future Generation Computer Systems, 2000, 16(8): 889-914. doi: 10.1016/S0167-739X(00)00043-1
    [13] LI X, WANG L. Application of improved ant colony optimization in mobile robot trajectory planning[J]. Mathematical Biosciences and Engineering, 2020, 17(6): 6756-6774. doi: 10.3934/mbe.2020352
    [14] 刘丽珏, 罗舒宁, 高琰, 等. 基于回溯蚁群-粒子群混合算法的多点路径规划[J]. 通信学报, 2019, 40(2): 102-110.

    LIU L J, LUO S N, GAO Y, et al. Multi-point path planning based on the algorithm of colony-particle swarm optimization[J]. Journal on Communications, 2019, 40(2): 102-110. (in Chinese)
    [15] 朱宏伟, 游晓明, 刘升. 协同过滤策略的异构双种群蚁群算法[J]. 计算机科学与探索, 2019, 13(10): 1754-1767.

    ZHU H W, YOU X M, LIU S. Heterogeneous dual population ant colony algorithm based on cooperative filtering strategy[J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(10): 1754-1767. (in Chinese)
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  77
  • HTML全文浏览量:  54
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-10
  • 刊出日期:  2023-09-30

目录

    /

    返回文章
    返回