留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

计及幅频特性的多体受电弓参数匹配

王英 柳玉龙 陈小强

王英,柳玉龙,陈小强. 计及幅频特性的多体受电弓参数匹配[J]. 机械科学与技术,2023,42(9):1409-1415 doi: 10.13433/j.cnki.1003-8728.20220111
引用本文: 王英,柳玉龙,陈小强. 计及幅频特性的多体受电弓参数匹配[J]. 机械科学与技术,2023,42(9):1409-1415 doi: 10.13433/j.cnki.1003-8728.20220111
WANG Ying, LIU Yulong, CHEN Xiaoqiang. Parameters Matching of Multi-body Pantograph Considering Amplitude and Frequency Characteristics[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(9): 1409-1415. doi: 10.13433/j.cnki.1003-8728.20220111
Citation: WANG Ying, LIU Yulong, CHEN Xiaoqiang. Parameters Matching of Multi-body Pantograph Considering Amplitude and Frequency Characteristics[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(9): 1409-1415. doi: 10.13433/j.cnki.1003-8728.20220111

计及幅频特性的多体受电弓参数匹配

doi: 10.13433/j.cnki.1003-8728.20220111
基金项目: 国家自然科学基金项目(51767013)与甘肃省科技厅自然科学基金项目(21JR7RA280)
详细信息
    作者简介:

    王英(1978−),副教授,博士生导师,研究方向为电气化铁路弓网动态优化与控制及轨道交通供电统可靠性,wyview@163.com

  • 中图分类号: U264.3 + 4;O32

Parameters Matching of Multi-body Pantograph Considering Amplitude and Frequency Characteristics

  • 摘要: 针对受电弓的非线性特性对受电弓-接触网系统(以下简称弓网系统)的性能造成的影响,基于拉普拉斯变换和数值方法,建立了一种多体受电弓-接触网耦合动力学模型。分析了多体受电弓参数对受电弓幅频特性的影响,根据分析结果,对接触压力波动的原因进行了分析,提出了一种减小接触压力波动的策略。将受电弓的非线性运动方程在平衡位置处进行高阶展开,得到等效模型。将受电弓不同参数对接触压力的影响进行对比,得出所有参数中弓头刚度和框架质量敏感度最高,并进行了单变量匹配和多变量匹配,对比得出多变量匹配效果更优。仿真结果表明参数优化后受电弓接触压力波动明显减小,受流质量明显提高。
  • 图  1  多体受电弓框架模型

    Figure  1.  The multi-body pantograph framework model

    图  2  受电弓等效模型

    Figure  2.  The equivalent model of the pantograph

    图  3  受电弓幅值频率曲线

    Figure  3.  The amplitude-frequency curve of the pantograph

    图  4  刚度对幅频特性的影响

    Figure  4.  The influence of stiffness on amplitude-frequency characteristics

    图  5  受电弓质量对幅频特性的影响

    Figure  5.  The influence of pantograph mass on amplitude-frequency characteristics

    图  6  最优参数值

    Figure  6.  Optimal parameter values

    图  7  目标函数的二维云图

    Figure  7.  Two-dimensional cloud picture of the objective function

    图  8  频率对比图

    Figure  8.  Frequency comparison diagram

    表  1  SS400 + 受电弓的的二质量块模型物理参数

    Table  1.   Physical parameters of the two-mass block model for the SS400+pantograph

    名称归算质量名称归算刚度名称归算阻尼
    MH6.1 kgKH10400 N/mCH10 Ns/m
    MF10.154 kgKF10600 N/mCF0.8 Ns/m
    下载: 导出CSV

    表  2  仿真结果与EN50318标准模型对比

    Table  2.   Comparison of simulation results with the EN50318 standard model

    参数标准范围仿真结果
    车速/(km·h−1250300250300
    接触力平均值110 ~ 120110 ~ 120118.993118.569
    接触力标准差26 ~ 3126 ~ 3124.35630.125
    统计接触压力最大值190 ~ 210210 ~ 230175.258177.235
    统计接触压力最小值20 ~ 40−5 ~ 2052.36532.154
    实际接触力最大值175 ~ 210190 ~ 225175.258177.235
    实际接触力最小值50 ~ 7530 ~ 5552.36532.154
    下载: 导出CSV

    表  3  不同KH下的标准压力差

    Table  3.   Standard pressure difference for different KH values

    KH/(N·m−1fz2/Hzfz2fd压力标准差
    200009.2370−4.64324.77
    2500010.317−3.56323.22
    3000011.293−2.58720.19
    3500012.192−1.68816.86
    4000013.029−0.85110.36
    4500013.816−0.0646.76
    5000014.5600.6810.56
    5500015.2671.38715.34
    6000015.9442.06422.46
    6500016.5932.71323.02
    7000017.2173.33723.23
    下载: 导出CSV

    表  4  不同MF下的压力标准差

    Table  4.   Standard deviation of pressure for different MF values

    MF/kg谐振频率/Hzfz2 fd压力标准差
    1017.2173.33726.15
    1515.3871.50722.32
    2014.3890.50918.39
    2513.757−0.1239.79
    3013.319−0.56115.36
    4012.751−0.12914.22
    8011.849−0.03122.35
    10011.661−0.21922.53
    50011.034−0.84625.34
    下载: 导出CSV
  • [1] CHEN X Q, ZHANG X, WANG Y, et al. Improved study on the fluctuation velocity of high-speed railway catenary considering the influence of accessory parts[J]. IEEE Access, 2020, 8: 138710-138718. doi: 10.1109/ACCESS.2020.3011415
    [2] 王英, 焦玉伟, 陈小强. 计及接触线脉动风激励的受电弓主动控制研究[J]. 机械科学与技术, 2021, 40(8): 4149-1157. doi: 10.13433/j.cnki.1003-8728.20200192

    WANG Y, JIAO Y W, CHEN X Q. Active control of pantograph with fluctuating wind excitation of contact wire considered[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(8): 4149-1157. (in Chinese) doi: 10.13433/j.cnki.1003-8728.20200192
    [3] 陈小强, 张玺, 王英, 等. 环境风对高速铁路接触线波动速度的影响[J]. 交通运输工程学报, 2020, 20(5): 93-104. doi: 10.19818/j.cnki.1671-1637.2020.05.007

    CHEN X Q, ZHANG X, WANG Y, et al. Influence of environmental wind on fluctuation velocity of contact wire of high-speed railway[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 93-104. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.05.007
    [4] JUNG S P, KIM Y G, PAIK J S, et al. Estimation of dynamic contact force between a pantograph and catenary using the finite element method[J]. Journal of Computational and Nonlinear Dynamics, 2012, 7(4): 041006. doi: 10.1115/1.4006733
    [5] SEO J H, SUGIYAMA H, SHABANA A A. Three-dimensional large deformation analysis of the multibody pantograph/catenary systems[J]. Nonlinear Dynamics, 2005, 42(2): 199-215. doi: 10.1007/s11071-005-2789-9
    [6] 姜静, 刘志刚, 鲁小兵, 等. 计及受电弓幅频特性的受电弓参数与吊弦间距匹配研究[J]. 振动与冲击, 2016, 35(18): 134-139. doi: 10.13465/j.cnki.jvs.2016.18.022

    JIANG J, LIU Z G, LU X B, et al. Coupling performance between pantograph parameters and dropper spacing considering the amplitude-frequency characteristics the of pantograph[J]. Journal of Vibration and Shock, 2016, 35(18): 134-139. (in Chinese) doi: 10.13465/j.cnki.jvs.2016.18.022
    [7] ZHANG W H, MEI G M, WU X J, et al. A study on dynamic behaviour of pantographs by using hybrid simulation method[J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit, 2005, 219(3): 189-199. doi: 10.1243/095440905X8880
    [8] MEI G M, ZHANG W H, ZHAO H Y, et al. A hybrid method to simulate the interaction of pantograph and catenary on overlap span[J]. Vehicle System Dynamics, 2006, 44(s1): 571-580.
    [9] 吴孟臻, 刘洋, 许向红. 高速弓网系统动力学参数敏度分析及优化[J]. 力学学报, 2021, 53(1): 75-83.

    WU M Z, LIU Y, XU X H. Sensitivity analysis and optimization on parameters of high speed pantograph-catenary system[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 75-83. (in Chinese)
    [10] PARK T J, HAN C S, JANG J H. Dynamic sensitivity analysis for the pantograph of a high-speed rail vehicle[J]. Journal of Sound and Vibration, 2003, 266(2): 235-260. doi: 10.1016/S0022-460X(02)01280-4
    [11] BAI Y F, ZHANG J, LIU W Z, et al. Study on influence of contact wire design parameters on contact characteristics of Pantograph-Catenary[C]//Proceedings of 2013 IEEE International Conference on Intelligent Rail Transportation Proceedings. Beijing: IEEE, 2013: 268-273
    [12] LIU Y L, WANG Y, CAO L, et al. Optimal matching of high-speed pantograph parameters considering catenary suspension irregular point and wind damping[M]//JIA L M, QIN Y, LIU B M, et al. Proceedings of the 4th International Conference on Electrical and Information Technologies for Rail Transportation (EITRT) 2019. Singapore: Springer, 2020: 527-536
    [13] 宋洋. 环境风下高速铁路弓网动态受流特性研究[D]. 成都: 西南交通大学, 2018

    SONG Y. Study on high-speed railway pantograph-catenary current collection quality under environmental wind load[D]. Chengdu: Southwest Jiaotong University, 2018. (in Chinese)
    [14] 姜静, 刘志刚, 宋洋. 考虑受电弓非线性的弓网动态特性仿真研究[J]. 计算机仿真, 2015, 32(2): 170-174. doi: 10.3969/j.issn.1006-9348.2015.02.038

    JIANG J, LIU Z G, SONG Y. Simulation study on dynamic behavior of pantograph-catenary considering the nonlinear characteristics of pantograph[J]. Computer Simulation, 2015, 32(2): 170-174. (in Chinese) doi: 10.3969/j.issn.1006-9348.2015.02.038
    [15] LEE J H, KIM Y G, PAIK J S, et al. Performance evaluation and design optimization using differential evolutionary algorithm of the pantograph for the high-speed train[J]. Journal of Mechanical Science and Technology, 2012, 26(10): 3253-3260. doi: 10.1007/s12206-012-0833-5
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  94
  • HTML全文浏览量:  39
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-09
  • 刊出日期:  2023-09-30

目录

    /

    返回文章
    返回