留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同负载下滚动轴承的PSO -SSTCA算法研究

张泽宇 惠记庄 任余 石泽 段雨

张泽宇,惠记庄,任余, 等. 不同负载下滚动轴承的PSO -SSTCA算法研究[J]. 机械科学与技术,2023,42(11):1829-1836 doi: 10.13433/j.cnki.1003-8728.20220110
引用本文: 张泽宇,惠记庄,任余, 等. 不同负载下滚动轴承的PSO -SSTCA算法研究[J]. 机械科学与技术,2023,42(11):1829-1836 doi: 10.13433/j.cnki.1003-8728.20220110
ZHANG Zeyu, HUI Jizhuang, REN Yu, SHI Ze, DUAN Yu. Research on PSO-SSTCA Algorithm of Rolling Bearings Under Different Loads[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(11): 1829-1836. doi: 10.13433/j.cnki.1003-8728.20220110
Citation: ZHANG Zeyu, HUI Jizhuang, REN Yu, SHI Ze, DUAN Yu. Research on PSO-SSTCA Algorithm of Rolling Bearings Under Different Loads[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(11): 1829-1836. doi: 10.13433/j.cnki.1003-8728.20220110

不同负载下滚动轴承的PSO -SSTCA算法研究

doi: 10.13433/j.cnki.1003-8728.20220110
基金项目: 国家自然科学基金面上项目(52278390)、陕西省秦创原“科学家+工程师”队伍建设项目(2022KXJ-150)、陕西省自然科学基金项目(2022JQ-515,2022JM-172)及西藏自治区科技计划项目(XZ202101ZR0044G,XZ2019TL-G-02)
详细信息
    作者简介:

    张泽宇(1990−),高级工程师,硕士生导师,博士,研究方向为工程装备监测技术与数据挖掘,zhangzeyu@chd.edu.cn

    通讯作者:

    惠记庄,教授,博士生导师,huijz6363@chd.edu.cn

  • 中图分类号: TH133.33

Research on PSO-SSTCA Algorithm of Rolling Bearings Under Different Loads

  • 摘要: 针对不同负载下滚动轴承故障诊断准确率不高和样本稀缺的问题,本文提出了一种基于粒子群优化的半监督迁移学习(PSO-SSTCA)算法。在迁移学习算法的基础上,引入希尔伯特-施密特独立性系数(HSIC)增强迁移学习过程中不同数据标签的依赖性,加入粒子群优化算法自适应寻找多核函数的最优系数,缩小数据集的类内间距,并利用K-近邻算法进行不同负载间滚动轴承的故障诊断。对4种不同负载工况下的滚动轴承振动信号进行分析,结果表明:在单-单、多-单负载工况下,PSO-SSTCA算法的平均准确率分别为85.92%与88%,与重构信号相比分别提高了10.75%与19.42%。该方法有效地为机械设备的状态监测与故障诊断提供了技术支撑。
  • 图  1  迁移学习原理图

    Figure  1.  Schematic diagram of transfer learning

    图  2  轴承振动信号数据

    Figure  2.  Bearing vibration signal data

    图  3  DC数据集PCA映射后的四维特征

    Figure  3.  Four-dimensional features after PCA mapping for D and C datasets

    图  4  DC数据集迁移变换后的四维特征

    Figure  4.  Four-dimensional features of D and C datasets after migration transformation

    表  1  待测故障滚动轴承参数

    Table  1.   Parameters of faulty rolling bearings to be tested

    型号内径/mm外径/mm节径/mm滚动体个数测量位置宽度/mm采样频率/kHz
    6205-2RS JEM SKF2552529驱动端1512
    下载: 导出CSV

    表  2  滚动轴承重构信号时域计算结果

    Table  2.   Rolling bearing reconstruction signals' time domain calculation results

    类别时频域特征IMF0IMF1IMF2IMF3
    无故障奇异熵0.370.270.190.16
    排列熵0.760.550.400.31
    内圈故障奇异熵0.720.160.070.05
    排列熵0.850.750.640.54
    外圈故障奇异熵0.550.180.160.11
    排列熵0.660.660.560.44
    下载: 导出CSV

    表  3  滚动轴承重构信号频域计算结果

    Table  3.   Rolling bearing reconstruction signal frequency domain calculation results

    类别重心频率均方频率均方根频率频率方差
    无故障254.04966520.86983.12901983.96
    内圈故障2269.568663659.592943.413512749.75
    外圈故障2277.248698418.072949.313512593.66
    下载: 导出CSV

    表  4  滚动轴承重构信号时频域计算结果

    Table  4.   Rolling bearing reconstruction signal time-frequency domain calculation results

    类别均方根偏斜度峰值峭度波形脉冲指标
    无故障0.230.0061.313.784.9485.5258
    内圈故障0.08−0.0561.696.5911.13150058.50
    外圈故障0.10−0.0122.364.9911.8174125.97
    下载: 导出CSV

    表  5  不同负载工况滚动轴承振动信号数据集构造

    Table  5.   Construction of rolling bearing vibration signal dataset for different loading conditions

    项目功率/W无故障故障为0.177 8 mm故障为0.533 4 mm样本名称
    内圈滚动体外圈内圈滚动体外圈
    030301010101010A/90
    735.4930301010101010B/90
    1470.9840401010101010C/100
    2206.4740401010101010D/100
    下载: 导出CSV

    表  6  单-单负载情况下各算法诊断准确率

    Table  6.   Diagnostic accuracy of each algorithm in single - single load case

    类别 A-B A-C A-D B-A B-C B-D C-A C-B C-D D-A D-B D-C
    原始信号 0.55 0.58 0.52 0.45 0.50 0.51 0.52 0.51 0.48 0.52 0.53 0.54
    重构信号 0.77 0.78 0.65 0.80 0.74 0.77 0.74 0.69 0.84 0.76 0.68 0.82
    重构 + TCA 0.80 0.81 0.63 0.83 0.86 0.80 0.77 0.74 0.9 0.84 0.76 0.94
    重构 + POS -SSTCA 0.82 0.89 0.76 0.88 0.90 0.86 0.79 0.82 0.9 0.89 0.80 1.00
    下载: 导出CSV

    表  7  多-单负载情况下各算法诊断准确率

    Table  7.   Diagnostic accuracy of each algorithm in the case of multiple-single load

    类别 AB-C AB-D AC-B AC-D AD-B AD-C BC-A BC-D BD-A BD-C CD-A CD-B
    原始信号 0.58 0.62 0.63 0.62 0.61 0.68 0.59 0.62 0.64 0.66 0.56 0.59
    重构信号 0.74 0.78 0.66 0.69 0.70 0.79 0.63 0.66 0.62 0.71 0.60 0.65
    重构 + TCA 0.9 0.72 0.78 0.81 0.81 0.92 0.81 0.8 0.8 0.87 0.76 0.77
    重构 + POS -SSTCA 0.9 0.84 0.89 0.88 0.88 0.96 0.88 0.88 0.88 0.93 0.79 0.85
    下载: 导出CSV
  • [1] 陈伟. 深度学习在滚动轴承故障诊断中的应用研究[D]. 成都: 西南交通大学, 2018

    CHEN W. Application of deep learning in rolling bearing fault diagnosis[D]. Chengdu: Southwest Jiaotong University, 2018. (in Chinese)
    [2] 张习习, 顾幸生. 基于集成学习概率神经网络的电机轴承故障诊断[J]. 华东理工大学学报(自然科学版), 2020, 46(1): 68-76. doi: 10.14135/j.cnki.1006-3080.20181206001

    ZHANG X X, GU X S. Motor bearing fault diagnosis method based on integrated learning probabilistic neural network[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2020, 46(1): 68-76. (in Chinese) doi: 10.14135/j.cnki.1006-3080.20181206001
    [3] QIN Y, JIN L, ZHANG A B, et al. Rolling bearing fault diagnosis with adaptive harmonic kurtosis and improved bat algorithm[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 3508112.
    [4] 赵志宏, 赵敬娇, 魏子洋. 基于BiLSTM的滚动轴承故障诊断研究[J]. 振动与冲击, 2021, 40(1): 95-101. doi: 10.13465/j.cnki.jvs.2021.01.013

    ZHAO Z H, ZHAO J J, WEI Z Y. Rolling bearing fault diagnosis based on BiLSM network[J]. Journal of Vibration and Shock, 2021, 40(1): 95-101. (in Chinese) doi: 10.13465/j.cnki.jvs.2021.01.013
    [5] 赵庆恩, 黄宏伟, 冯坤, 等. 基于小波包能量-决策树的滚动轴承混合故障诊断[J]. 轴承, 2016(6): 43-46. doi: 10.3969/j.issn.1000-3762.2016.06.011

    ZHAO Q E, HUANG H W, FENG K, et al. Mixed fault diagnosis for rolling bearings based on wavelet packet energy- decision tree[J]. Bearing, 2016(6): 43-46. (in Chinese) doi: 10.3969/j.issn.1000-3762.2016.06.011
    [6] 王化玲, 刘志远, 赵欣洋, 等. 基于故障敏感分量和改进K近邻分类器的故障状态识别[J]. 重庆大学学报, 2020, 43(12): 33-40. doi: 10.11835/j.issn.1000-582X.2020.002

    WANG H L, LIU Z Y, ZHAO X Y, et al. Fault state identification method based on fault sensitive components and improved KNNC[J]. Journal of Chongqing University, 2020, 43(12): 33-40. (in Chinese) doi: 10.11835/j.issn.1000-582X.2020.002
    [7] CHE C C, WANG H W, NI X M, et al. Intelligent fault diagnosis method of rolling bearing based on stacked denoising autoencoder and convolutional neural network[J]. Industrial Lubrication and Tribology, 2020, 72(7): 947-953. doi: 10.1108/ILT-11-2019-0496
    [8] SONG X D, ZHU D J, LIANG P, et al. A new bearing fault diagnosis method using elastic net transfer learning and LSTM[J]. Journal of Intelligent & Fuzzy Systems, 2021, 40(6): 12361-12369.
    [9] 沈飞, 陈超, 严如强. 奇异值分解与迁移学习在电机故障诊断中的应用[J]. 振动工程学报, 2017, 30(1): 118-126. doi: 10.16385/j.cnki.issn.1004-4523.2017.01.016

    SHEN F, CHEN C, YAN R Q. Application of SVD and transfer learning strategy on motorfault diagnosis[J]. Journal of Vibration Engineering, 2017, 30(1): 118-126. (in Chinese) doi: 10.16385/j.cnki.issn.1004-4523.2017.01.016
    [10] DORRI F, GHODSI A. Adapting component analysis[C]//Proceedings of the IEEE 12th International Conference on Data Mining. Brussels, Belgium: IEEE, 2012: 846-851
    [11] 张西宁, 余迪, 刘书语. 基于迁移学习的小样本轴承故障诊断方法研究[J]. 西安交通大学学报, 2021, 55(10): 30-37. doi: 10.7652/xjtuxb202110004

    ZHANG X N, YU D, LIU S Y. Fault diagnosis method for small sample bearing based on transfer learning[J]. Journal of Xi'an Jiaotong University, 2021, 55(10): 30-37. (in Chinese) doi: 10.7652/xjtuxb202110004
    [12] PAN S J, TSANG I W, KWOK J T, et al. Domain adaptation via transfer component analysis[J]. IEEE Transactions on Neural Networks, 2011, 22(2): 199-210. doi: 10.1109/TNN.2010.2091281
    [13] CWRU. Bearing Date Center, seeded fault test data[EB/OL].[2021-08-10]. http://csegroups.case.edubearingdatacenter/
    [14] 张泽宇, 惠记庄, 石泽. 小波包最优基分解树的降噪滤波方法研究[J]. 机械科学与技术, 2020, 39(1): 28-34. doi: 10.13433/j.cnki.1003-8728.20190239

    ZHANG Z Y, HUI J Z, SHI Z. Research on denoising and filtering method based on wavelet packet optimal base decomposition tree[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(1): 28-34. (in Chinese) doi: 10.13433/j.cnki.1003-8728.20190239
    [15] ZHANG Z Y, HUI J Z, SHI Z, et al. Cycle condition identification of loader based on optimized KNN algorithm[J]. IEEE Access, 2020, 8: 69532-69542. doi: 10.1109/ACCESS.2020.2985052
  • 加载中
图(4) / 表(7)
计量
  • 文章访问数:  657
  • HTML全文浏览量:  22
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-09
  • 刊出日期:  2023-11-30

目录

    /

    返回文章
    返回