留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速列车受电弓导流罩气动噪声特性分析

蔡国华 刘志明 武振锋 周述生

蔡国华,刘志明,武振锋, 等. 高速列车受电弓导流罩气动噪声特性分析[J]. 机械科学与技术,2023,42(9):1502-1507 doi: 10.13433/j.cnki.1003-8728.20220109
引用本文: 蔡国华,刘志明,武振锋, 等. 高速列车受电弓导流罩气动噪声特性分析[J]. 机械科学与技术,2023,42(9):1502-1507 doi: 10.13433/j.cnki.1003-8728.20220109
CAI Guohua, LIU Zhiming, WU Zhenfeng, ZHOU Shusheng. Analysis on Aerodynamic Noise Characteristics of Pantograph Fairing of High-speed Train[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(9): 1502-1507. doi: 10.13433/j.cnki.1003-8728.20220109
Citation: CAI Guohua, LIU Zhiming, WU Zhenfeng, ZHOU Shusheng. Analysis on Aerodynamic Noise Characteristics of Pantograph Fairing of High-speed Train[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(9): 1502-1507. doi: 10.13433/j.cnki.1003-8728.20220109

高速列车受电弓导流罩气动噪声特性分析

doi: 10.13433/j.cnki.1003-8728.20220109
基金项目: 国家自然科学基金重大项目(11790281)
详细信息
    作者简介:

    蔡国华(1995−),硕士研究生,研究方向为列车空气动力学,20121320@bjtu.edu.cn

    通讯作者:

    刘志明,教授,博士生导师,zhmliu1@bjtu.edu.cn

  • 中图分类号: U270.16

Analysis on Aerodynamic Noise Characteristics of Pantograph Fairing of High-speed Train

  • 摘要: 针对高速列车受电弓区域气动噪声问题,采用大涡模拟和FW-H声学模型重点对列车在250 km/h、350 km/h运行时受电弓导流罩气动噪声进行数值模拟,建立了车体+受电弓导流罩的计算模型,分析导流罩表面偶极子声源分布和气动噪声频谱特性。研究结果表明:350 km/h下导流罩表面气动噪声整体大于250 km/h;两种速度下导流罩表面偶极子声源分布规律在频域表现一致:在高频阶段声压级明显低于低频阶段,5 000 Hz下最大声压级仅为20 Hz下的40%;导流罩表面最大声压级都诱发于凹腔与后引导面的过渡处,20 Hz下分别可达136 dB、143 dB。此外,导流罩近场和远场气动噪声频谱曲线相似,均是一种宽频噪声,且能量主要集中在150 ~ 950 Hz,对后续更高速级列车受电弓导流罩降噪结构设计和隔声材料的选取有一定实际参考意义。
  • 图  1  列车主要噪声源与速度分区

    Figure  1.  Main sources of noise and speed zoning of trains

    图  2  高速列车受电弓系统

    Figure  2.  The pantograph system of high-speed trains

    图  3  几何模型

    Figure  3.  Geometric model

    图  4  计算域示意图

    Figure  4.  Schematic diagram of the computational domain

    图  5  流场计算网格

    Figure  5.  Computational grid for flow field calculations

    图  6  250 km/h导流罩表面偶极子噪声分布

    Figure  6.  Dipole noise distribution on the surface of the 250 km/h fairing

    图  7  350 km/h导流罩表面偶极子噪声分布

    Figure  7.  Dipole noise distribution on the surface of the 350 km/h fairing

    图  8  导流罩表面噪声频谱特性

    Figure  8.  Noise spectrum characteristics of the fairing surface

    图  9  A计权噪声频谱特性

    Figure  9.  A-weighted noise spectrum characteristics

    图  10  远场标准监测点示意图

    Figure  10.  Schematic diagram of far-field standard monitoring points

    图  11  远场气动噪声频谱

    Figure  11.  Far-field aerodynamic noise spectrum

    表  1  三辆编组与单节车体导流罩气动阻力对比

    Table  1.   Comparison of aerodynamic resistance between three car formations and one car body fairing

    速度/(km·h–1三辆编组形式/N单节车体/N差值/N
    2502332.42323.29.2
    3003270.73258.312.4
    下载: 导出CSV
  • [1] 田红旗. 中国高速轨道交通空气动力学研究进展及发展思考[J]. 中国工程科学, 2015, 17(4): 30-41. doi: 10.3969/j.issn.1009-1742.2015.04.004

    TIAN H Q. Development of research on aerodynamics of high-speed rails in China[J]. Strategic Study of CAE, 2015, 17(4): 30-41. (in Chinese) doi: 10.3969/j.issn.1009-1742.2015.04.004
    [2] WU Z F, YANG E Y, DING W C. Design of large-scale streamlined head cars of high-speed trains and aerodynamic drag calculation[J]. Archives of Transport, 2017, 44(4): 89-97. doi: 10.5604/01.3001.0010.6164
    [3] 朱剑月, 张清, 徐凡斐, 等. 高速列车气动噪声研究综述[J]. 交通运输工程学报, 2021, 21(3): 39-56.

    ZHU J Y, ZHANG Q, XU F F, et al. Review on aerodynamic noise research of high-speed train[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 39-56. (in Chinese)
    [4] 孙振旭, 姚永芳, 杨焱, 等. 国内高速列车气动噪声研究进展概述[J]. 空气动力学学报, 2018, 36(3): 385-397.

    SUN Z X, YAO Y F, YANG Y, et al. Overview of the research progress on aerodynamic noise of high speed trains in China[J]. Acta Aerodynamica Sinica, 2018, 36(3): 385-397. (in Chinese)
    [5] LU W T, WANG Y, ZHANG C Q. Research on the distribution of aerodynamic noises of high-speed trains[J]. Journal of Vibroengineering, 2017, 19(2): 1438-1452. doi: 10.21595/jve.2017.18139
    [6] NOGER C, PATRAT J C, PEUBE J, et al. Aeroacoustical study of the TGV pantograph recess[J]. Journal of Sound and Vibration, 2000, 231(3): 563-575. doi: 10.1006/jsvi.1999.2545
    [7] 陈羽, 高阳, 王毅刚, 等. 导流罩对受电弓气动噪声影响的风洞试验研究[J]. 声学技术, 2018, 37(5): 475-481.

    CHENG Y, GAO Y, WANG Y G, et al. Wind tunnel experimental research on the effect of guide cover on aerodynamic noise of pantograph[J]. Technical Acoustics, 2018, 37(5): 475-481. (in Chinese)
    [8] 姚永芳, 孙振旭, 刘文, 等. 高速列车受电弓气动噪声特性分析[J]. 北京大学学报(自然科学版), 2020, 56(3): 385-398.

    YAO Y F, SUN Z X, LIU W, et al. Analysis of aerodynamic noise characteristics of pantograph in high speed train[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2020, 56(3): 385-398. (in Chinese)
    [9] 戚凯科, 袁天辰, 杨俭. 高速列车受电弓气动噪声降噪研究[J]. 计算机仿真, 2019, 36(9): 173-180. doi: 10.3969/j.issn.1006-9348.2019.09.035

    QI K K, YUAN T C, YANG J. Research on aerodynamic noise reduction of high-speed train pantograph[J]. Computer Simulation, 2019, 36(9): 173-180. (in Chinese) doi: 10.3969/j.issn.1006-9348.2019.09.035
    [10] 张亚东, 张继业, 李田. 高速列车气动噪声贡献量分析[J]. 交通运输工程学报, 2017, 17(4): 78-88. doi: 10.3969/j.issn.1671-1637.2017.04.008

    ZHANG Y D, ZHANG J Y, LI T. Contribution analysis of aerodynamic noise of high-speed train[J]. Journal of Traffic and Transportation Engineering, 2017, 17(4): 78-88. (in Chinese) doi: 10.3969/j.issn.1671-1637.2017.04.008
    [11] WU Z F, XIE Z H, WANG P, et al. Aerodynamic drag performance analysis of different types of high-speed train pantograph fairing[J]. Journal of Applied Science and Engineering, 2020, 23(3): 509-519.
    [12] 陆晓柳. CRH380A型高速列车气动噪声数值模拟研究[D]. 成都: 西南交通大学, 2017

    LU X L. Numerical analysis of aerodynamic noise of CRH380A high speed trains[D]. Chengdu: Southwest Jiaotong University, 2017. (in Chinese)
    [13] 马大猷. 现代声学理论基础[M]. 北京: 科学出版社, 2004

    MA D Y. Foundation of modern acoustic theory[M]. Beijing: Science Press, 2004. (in Chinese)
    [14] LIANG X F, LIU H F, DONG T Y, et al. Aerodynamic noise characteristics of high-speed train foremost bogie section[J]. Journal of Central South University, 2020, 27(6): 1802-1813. doi: 10.1007/s11771-020-4409-8
    [15] 李人宪. 高速列车气动影响[M]. 北京: 中国铁道出版社, 2016

    LI R X. Aerodynamic influence of high speed train[M]. Beijing: China Railway Publishing House, 2016. (in Chinese)
    [16] European Committee for Standardization. ISO 3095-2013 Acoustics-railway applications-measurement of noise emitted by railbound vehicles[S]. London: British Standards Institution, 2013
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  77
  • HTML全文浏览量:  58
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-05
  • 刊出日期:  2023-09-30

目录

    /

    返回文章
    返回